
1

A Unified Cryptoprocessor for Lattice-based
Signature and Key-exchange

Aikata, Ahmet Can Mert, David Jacquemin, Amitabh Das, Donald Matthews, Santosh Ghosh, Sujoy Sinha Roy

Abstract

In this paper, we propose a compact, unified and instruction-set cryptoprocessor architecture for performing both lattice-based
digital signature and key exchange operations. As a case study, the cryptoprocessor architecture has been optimized targeting the
signature scheme ‘Crystals-Dilithium’ and the key encapsulation mechanism ‘Saber’, both finalists in the NIST’s post-quantum
cryptography standardization project. The implementation is entirely in hardware and leverages from algorithmic as well as
structural synergies in the two schemes to realize a high-speed unified post-quantum key-exchange and digital signature engine
within a compact area.

The area consumption of the entire cryptoprocessor architecture is 18,040 LUTs, 9,101 flip-flops, 4 DSP units, and 14.5
BRAMs on the Xilinx Zynq Ultrascale+ ZCU102 FPGA. The FPGA implementation of the cryptoprocessor achieving 200 MHz
clock frequency finishes the CCA-secure key generation, encapsulation, and decapsulation operations for Saber in 54.9, 72.5 and
94.7 µs, respectively. For Dilithium-II, the key generation, signature generation, and signature verification operations take 78.0,
164.8 and 88.5 µs, respectively, for the best-case scenario where a valid signature is generated after the first loop iteration.

The cryptoprocessor is also synthesized for ASIC with the UMC 65nm library. It achieves 370 MHz clock frequency and
consumes 0.301 mm2 area (≈200.6 kGE) excluding on-chip memory. The ASIC implementation can perform the key generation,
encapsulation, and decapsulation operations for Saber in 29.6, 39.2, and 51.2 µs, respectively, while it can perform the key
generation, signature generation, and signature verification operations for Dilithium-II in 42.2, 89.1, and 47.8 µs, respectively.

Index Terms

Dilithium, Saber, Hardware Implementation, Lattice-based Cryptography, Post-quantum cryptography

I. INTRODUCTION

Shor’s quantum algorithm solves the integer factorization and discrete logarithm problems using quantum computers in poly-
nomial time [1]. These number theoretic problems are the foundations of the two most widely used public-key cryptosystems,
namely the RSA and Elliptic Curve cryptosystems. Hence, if a sufficiently powerful quantum computer is ever constructed,
then the present-day public-key cryptographic schemes can be broken using Shor’s algorithm.

As fruits of significant research in quantum computing engineering, small-scale quantum computers have been constructed
independently by Google, IBM, and Intel, over the last five years. In October 2019, Google’s 54-qubit quantum processor
‘Sycamore’ computed a specific task in around 200 seconds, the equivalent of which can be computed in 10,000 years using a
state-of-the-art supercomputer [2]. Although the present-day quantum computers are not powerful enough to break the RSA and
Elliptic curve-based public-key cryptography, giant leaps are forecast and quantum computing experts anticipate that powerful
enough quantum computers can be built within the next 10 to 15 years.

Post-quantum cryptography aims at developing new cryptographic protocols that will remain secure even after the quantum
computers are built. In 2016, NSA recommended a gradual transition towards post-quantum cryptography. Furthermore, National
Institute of Standards and Technology (NIST) initiated a project ‘Post-Quantum Cryptography (PQC) Standardization’ in 2016
to develop and standardize post-quantum public-key cryptography algorithms, and invited researchers from all over the world
to contribute to their standardization project. After the first two rounds, NIST initiated the final round in July 2020 and
announced the finalists. The finalists in the public-key encryption (PKE) or key encapsulation mechanism (KEM) category are
Classic-McEliece [3], CRYSTALS-Kyber [4], NTRU [5], and Saber [6]; and in the digital signature category are CRYSTALS-
Dilithium [7], Falcon [8], and Rainbow [9]. Of these finalists, only Classic-McEliece and Rainbow are code-based and oil-
vinegar-based constructions, whereas all the remaining candidates are lattice-based constructions. After the second round of
the standardization project, the project report from NIST [10] mentions that it is likely that at least one of these lattice-based
candidates will be chosen as a standard. Additionally, NIST encouraged more research on improving the implementation and
physical security aspects of all the finalist and alternate candidates. Making post-quantum cryptography ready for deployment
on a wide range of platforms is a challenging task. Hence, significant research on the implementation aspects of post-quantum
cryptography is needed to make it practical, efficient, and secure on a wide range of platforms. In this paper, we address this
challenge by realizing a compact yet high-speed cryptoprocessor for lattice-based KEM and signature.

Aikata, Ahmet Can Mert, David Jacquemin, and Sujoy Sinhar Roy are with Graz University of Technology, Graz, Austria Contact email: {aikata, ahmet.mert,
david.jacquemin, sujoy.sinharoy} (at) iaik.tugraz.at

Amitabh Das, and Donald Matthews are with AMD. Austin, Texas
Santosh Ghosh is with Intel Labs, Intel Corporation, Hillsboro, OR, USA

2

Following the initiation of the first round of NIST’s PQC standardization in November 2017, hardware implementations
of some of the PQC candidates started appearing in 2018. To the best of our knowledge, there are only a few published
unified cryptoprocessors that could execute more than one lattice-based PQC scheme. In [11], a configurable cryptoprocessor
architecture ‘Sapphire’ was designed to execute multiple lattice-based PQC schemes, namely Frodo, NewHope, qTESLA,
CRYSTALS-Kyber, and CRYSTALS-Dilithium. Although Saphire was able to reduce the number of core computation cycles
with respect to software implementations of the above-mentioned PQC schemes on resource-constrained microcontrollers, it
required a large silicon area. A major drawback of Saphire is that it does not support the latest specifications of the two finalists
CRYSTALS-Kyber [4] and CRYSTALS-Dilithium [7].

In [12], a tightly-coupled RISC-V extension, known as ‘RISQ-V’, was proposed for providing hardware acceleration support
to NewHope and CRYSTALS-Kyber (and Saber to a minor extent). Their architecture mostly focuses on accelerating the
Number Theoretic Transform (NTT)-based polynomial multiplication of NewHope. As the round 2 and 3 specifications of
CRYSTALS-Kyber use a different variant of NTT that requires arithmetic in a quadratic extension field, the speedup for Kyber
is not as good as that for NewHope. Additionally, for Saber, due to limited hardware support, the cycle count is arguably not
superior to optimized software implementations on an ARM Cortex M4 microcontroller [13]. No hardware support for the
lattice-based signature schemes Dilithium or Falcon is available in RISQ-V.

In this paper, we propose a compact and fast cryptoprocessor architecture for performing both lattice-based signature and
key-exchange operations. We realized this unified cryptoprocessor architecture by exploring synergies in the lattice-based finalist
PKE/KEM candidate Saber [6] and the signature candidate Dilithium [7].

Contributions
We make the following contributions:
• As a first step, we take two NIST-PQC finalists, namely Dilithium and Saber, and identify several algorithmic and

structural synergies in them. These synergies are the key to implementing an optimized and compact unified cryptoprocessor
architecture for post-quantum digital signature and key encapsulation mechanism.

• Polynomial multiplication is a central arithmetic operation in both schemes. It is a time- as well area-consuming oper-
ation. While Dilithium [7] uses a prime modulus and makes the Number Theoretic Transform (NTT)-based polynomial
multiplication an integral part of the scheme, Saber [6] uses power-of-two moduli and gives implementors the freedom
to choose an appropriate polynomial multiplication. As we aim at designing a unified cryptoprocessor for both Dilithium
and Saber, we use the NTT-based polynomial multiplication for Saber too. We compute optimized parameters for the
NTT of Saber and then design a common NTT unit for Dilithium and Saber in minimum area overhead.

• Both Dilithium and Saber spend significant proportions of their overall computation times in Keccak-based pseudo-
random number generations and hash calculations. However, as the two schemes use different parameter sets, pre- and
post-processing of the data at the input and output of the Keccak function happen in different ways. To make our
cryptoprocessor compact and fast at the same time, we have implemented an optimized wrapper around the Keccak
block to perform scheme-specific processing of data on-the-fly. Our design approach reduces both area and cycle counts
significantly.

• Besides polynomial multiplication and Keccak-based operations, the two schemes use a set of additional building blocks.
Although these blocks are of low-complexity, typically of O(n), their implementations in hardware are scheme-specific
and require bit-level manipulations. We optimize these building blocks to reduce their memory access and implement
them area-optimally.

• As the two schemes consist of multiple data-independent sub-operations, we reduce the overall cycle counts by executing
several of these sub-operations in parallel, when possible. With this strategy, we are able to obtain significant reductions
in the number of computation cycles.

II. PRELIMINARIES

In this section we discuss the design specifications of the two lattice based schemes: Saber and Dilithium.

A. Saber

Saber [6] is an IND-CCA secure Key Encapsulation Mechanism (KEM) which has been selected as a finalist in the NIST
PQC standardization project. Its security relies on the hardness of the Module Learning With Rounding (MLWR) problem.
Saber uses the MLWR problem with two moduli p and q, both powers-of-two, to construct a Chosen Ciphertext Attack
(CCA) secure key encapsulation mechanism (KEM). It has three variants: LightSaber, Saber, and FireSaber targeting low,
medium, and high security levels respectively. All of these variants use the same polynomial rings Rq = Zq[x]/⟨x256+1⟩ and
Rp = Zp[x]/⟨x256+1⟩ with the power-of-two moduli q = 213 and p = 210. The three variants use different module-dimensions
and secret-distributions. The module dimensions for LightSaber, Saber, and FireSaber are 2, 3, and 4 respectively; the secret
coefficients for them are sampled from binomial distributions with parameters µ = 10, 8, and 6 respectively. The construction of
Saber follows two steps. In the first step, a Chosen Plaintext Attack resistant (i.e., IND-CPA) public-key encapsulation scheme

3

is built. Next, a post-quantum variant of the Fujisaki-Okamoto transform is applied on the top of the IND-CPA encryption
scheme to realize an IND-CCA KEM. The IND-CPA algorithms used in Saber-PKE [6] are shown in Alg. 1, 2, and 3; and
the IND-CCA algorithms used in Saber-KEM are shown in Alg. 4, 6, and 5.

Algorithm 1: Saber.PKE.KeyGen() [14]
1 seedAAA ← U({0, 1}256)
2 AAA = gen(seedAAA) ∈ Rl×l

q

3 r = U({0, 1}256)
4 sss = βµ(Rl×1

q ; r)
5 bbb = ((AAATsss+ hhh) mod q)≫ (εq − εp) ∈ Rl×1

p

6 return (pk := (seedAAA, bbb), sk := (sss))

Algorithm 2: Saber.PKE.Enc(pk = (seedAAA, bbb),m ∈ R2; r) [14]
1 AAA = gen(seedAAA) ∈ Rl×l

q

2 if r is not specified then
3 r = U({0, 1}256)
4 s′s′s′ = βµ(Rl×1

q ; r)
5 bbb′ = ((AAAsss′ + hhh) mod q)≫ (εq − εp) ∈ Rl×1

p

6 v′ = bbbT (sss′ mod p) ∈ Rp

7 cm = (v′ + h1 − 2εp−1m mod p)≫ (εp − εT) ∈ RT

8 return c := (cm, b′b′b′)

Algorithm 3: Saber.PKE.Dec(sk = sss, c = (cm, b′b′b′)) [14]
1 v = bbb′T (sss mod p) ∈ Rp

2 m′ = ((v − 2εp−εT cm + h2) mod p)≫ (εp − 1) ∈ R2

3 return m′

Algorithm 4: Saber.KEM.KeyGen() [14]
1 (seedAAA, bbb, sss) = Saber.PKE.KeyGen()
2 pk = (seedAAA, bbb)
3 pkh = F(pk)
4 z = U({0, 1}256)
5 return (pk := (seedAAA, bbb), sk := (sss, z, pkh))

The function gen() expands a uniform seed ρ ∈ {0, 1}256 using the Keccak-based expandable output function (XOF)
SHAKE-128 and generates the public matrix AAA ∈ Rk×l

q . The CCA transforms in Alg. 4, 5, and 6 also use the Keccak-based
hash functions SHA3-256 and SHA3-512.

Secret polynomials are sampled from a binomial distribution with parameter µ using a binomial sampler. To compute these
binomial-distributed samples, first a µ-bit pseudorandom string is generated using SHAKE-128, and then it is split into two
substrings of length µ/2. Next, the Hamming weights of the two substrings are subtracted to produce a binomial-distributed
sample. As a subtraction is performed in this step, the output sample can have a positive or a negative sign with equal
probability.

As shown in the three IND-CPA algorithms 1, 2, and 3, polynomial multiplications are performed several times. That makes
polynomial multiplication a performance-critical building block.

The algorithms also use other less-complicated operations, such as polynomial addition/subtraction, coefficient-wise rounding
using bit-shifting, equality check of two polynomials, pack/unpacking of polynomial-coefficients into/from byte strings, etc.
These operations are of linear time complexity.

B. Dilithium

Dilithium [7] is a finalist digital signature scheme in the NIST PQC standardization project. It is built upon the well-known
Fiat-Shamir with aborts framework [15] and its security is based on the computational hardness of the Module Learning With
Errors (MLWE) and Module Short Integer Solution (MSIS) problems.

4

Algorithm 5: Saber.KEM.Encaps(pk = (seedAAA, bbb)) [14]
1 m← U({0, 1}256)
2 (K̂, r) = G(F(pk),m)
3 c = Saber.PKE.Enc(pk,m; r)

4 K = F(K̂, c)
5 return (c,K)

Algorithm 6: Saber.KEM.Decaps(sk = (sss, z, pkh), pk = (seedAAA, bbb), c) [14]
1 m′ = Saber.PKE.Dec(sss, c)

2 (K̂ ′, r′) = G(pkh,m′)
3 c′ = Saber.PKE.Enc(pk,m′; r′)

4 if c = c′ then return K = H(K̂ ′, c) ;
5 else return K = H(z, c) ;

Depending on the size of the module Rk×ℓ
q with k, ℓ > 1, Dilithium comes with three variants, namely Dilithium-2, 3 and 5 for

the NIST-specified security levels 2, 3 and 5 respectively [7]. Dilithium-2 uses (k, ℓ) = (4, 4), Dilithium-3 uses (k, ℓ) = (6, 5)
and Dilithium-5 uses (k, ℓ) = (8, 7). All the three variants of Dilithium use the polynomial ring Rq = Zq[x]/⟨x256 + 1⟩ with
q = 223− 213− 1 a prime modulus. The key-generation, signing, and verification algorithms are described in Alg. 7, 8, and 9
respectively. Readers may follow the official specification of Crystals-Dilithium [7] for full details of the steps performed in
the algorithms. These algorithms use the following low-level functions:
• ExpandA(): This function generates the polynomials in matrix AAA ∈ Rk×ℓ

q separately by expanding the common seed
ρ ∈ {0, 1}256 along with different 16-bit nonce values. To generate a polynomial, SHAKE-128 is used to expand a seed-
nonce pair and then the expanded bit string is post-processed using rejection sampling to ensure that all the coefficients
are uniform in the set {0, · · · , q − 1}. The polynomials are generated in the NTT representation directly.

• ExpandS(): This function is used to generate the secret polynomial vectors sss1 and sss2 ∈ Sℓ
η×Sk

η . Forr each polynomial the
seed ς and a 16-bit nonce are fed to SHAKE-256 and the squeezed output is given to the rejection sampler for sampling
the signed values in the range {−η, η}.

• Power2Roundq(): It is used to perform bit-wise break up of an element in Zq into higher-order and lower-order bits. An
element r = r1 · 2d + r0 will be broken into r0 and r1, where r0 = r mod ±2d and r1 = (r − r0)/2

d.
• HighBitsq() and LowBitsq(): Let α be a divisor of q − 1. The function Decomposeq() is defined in the same way as
Power2Round() with α replacing 2d in Power2Round(). Thus Decomposeq() breaks an input r ∈ Zq into r = r1 ·α+ r0.
Now r1 will be the output of HighBitsq() and r0 will be the output of LowBitsq().

• MakeHintq(): It uses Decomposeq() to produce a hint hhh.
• UseHintq(): It use the hint hhh produced by MakeHintq() to recover the high-bits.
• CRH(): This is a collision resistant hash function which utilizes 384 bits of the output of SHAKE-256.
• SampleInBall: It produces a polynomial with only τ coefficients set to +1 or −1 and the remaining coefficients set to

0.
• ExpandMask(): This function expands ρ́ ∥ κ using SHAKE to generate the polynomial vector yyy. During this expansion,

the SHAKE output is broken into a sequence of positive integers in the range [0, 2γ1 − 1] and these are processed using
a rejection sampling.

• NTT: Polynomial multiplications are performed using the Number Theoretic Transform (NTT) method.
The key generation of Dilithium (Alg. 7) samples random secret-key vectors sss1 and sss2 in line 3. The polynomials in these

vectors have coefficients of magnitude at most η.

Algorithm 7: Dilithium.Gen() [7]
1 ζ ← {0, 1}256
2 (ρ, ς,K) ∈ {0, 1}256×3 := H(ζ) {H is instantiated as SHAKE-256.}
3 (sss1, sss2) ∈ Sℓ

η × Sk
η := ExpandS(ς)

4 AAA ∈ Rk×ℓ
q := ExpandA(ρ) {AAA is generated and stored in NTT form as Â̂ÂA}

5 ttt := AAAsss1 + sss2 { AAAsss1 is computed as NTT−1(Â̂ÂA · NTT(sss1))}.
6 (ttt1, ttt0) := Power2Roundq(ttt, d)
7 tr ∈ {0, 1}384 := CRH(ρ||ttt1)
8 return (pk = (ρ, ttt1), sk = (ρ,K, tr,sss1, sss2, ttt0))

5

The signing operation (Alg. 8) contains a loop that generates a potential signature and checks a set of constraints on the
generated signature. When all the constraints are satisfied, a valid signature is produced as the output; otherwise the generated
signature is rejected and the loop continues with generating another potential signature. These rejections are essential to avoid
the dependency of the generated signature on the secret key. Inside the signing-loop, a masking vector yyy with coefficients less
than magnitude γ1 is generated. The polynomial c in line 11 is a sparse polynomial with exactly τ coefficients set to the values
1 or -1 and the rest 256 - τ coefficients set to zeros. A potential signature zzz is computed in line 12 and then constraints are
checked starting from line 14 to 19.

Algorithm 8: Dilithium.Sign(sk,M) [7]

1 AAA ∈ Rk×l
q := ExpandA(ρ) {AAA is generated and stored in NTT form as Â̂ÂA.}

2 µ ∈ {0, 1}384 := CRH(tr||M)
3 κ := 0, (zzz,hhh) :=⊥
4 ρ́ ∈ {0, 1}384 := CRH(K||µ) (or ρ́← {0, 1}384 for randomized signing)
5 Before the loop starts, precompute ŝ0̂s0̂s0 = NTT(s0s0s0), ŝ1̂s1̂s1 = NTT(s1s1s1), and t̂0̂t0̂t0 = NTT(t0t0t0)
6 while (zzz,hhh) =⊥ do
7 yyy ∈ S̃ℓ

γ1
:= ExpandMask(ρ́, κ)

8 www := AAAyyy {This is computed as www := NTT−1(Â̂ÂA · NTT(y)).}
9 www1 := HighBitsq(www, 2γ2)

10 c̃ ∈ {0, 1}256 := H(µ ∥ www1)
11 c ∈ Bτ := SampleInBall(c̃) {c is stored as ĉ = NTT(c)}
12 zzz := yyy + csss1 {csss1 is computed as NTT−1(c · ŝ̂ŝs1)}
13 rrr0 := LowBitsq(www − csss2, 2.γ2) {csss2 is computed as NTT−1(c · ŝ̂ŝs2)}
14 if ∥ zzz ∥∞≥ γ1 − β or ∥ rrr0 ∥∞≥ γ2 − β then
15 (zzz,hhh) :=⊥
16 else
17 hhh := MakeHintq(−cttt0,www − csss2 + cttt0, 2.γ2){cttt0 is computed as NTT−1(c · t̂̂t̂t0)}
18 if ∥ cttt0 ∥∞≥ γ2 or Hamming.Weight(hhh) > ω then
19 (zzz,hhh) :=⊥

20 κ := κ+ ℓ
21 return σ = (zzz,hhh, c̃)

The verification operation (Alg. 9) is cheaper than key-generation and signing. It accepts a signature if all the three conditions
specified in line 5 are satisfied.

III. SYNERGIES AND DESIGN DECISIONS

As described in the previous section, both Saber and Dilithium are based on module lattices and therefore they share structural
similarities to some extent. For example, both schemes operate on matrices and vectors of polynomials where the polynomials
are always of 256 coefficients. Hence, the underlying elementary polynomial arithmetic operators are common to Dilithium and
Saber. Furthermore, both schemes use Keccak-based [16] hash functions and pseudorandom number generators. Note that in
ring or module lattice-based post-quantum public-key schemes, polynomial multiplications, hash calculations and pseudorandom
number generations are the most expensive operations. The two schemes also have their own scheme-specific (hence distinct)
building blocks. Fortunately, these exclusive building blocks have O(n) time complexity and hence are computationally cheap.
That gives us the freedom to design them using small amount of computational resources. These above-mentioned synergies
in Dilithium and Saber motivated us to investigate efficient implementation techniques such that we could design a unified
cryptoprocessor for accelerating the two schemes. Having a compact as well as a unified implementation of the two schemes
could make lattice-based KEM and digital signature a reality on resource-constrained platforms. In the following part of this

Algorithm 9: Dilithium.Verify(pk,M, σ = (zzz,hhh, c̃)) [7]

1 AAA ∈ Rk×ℓ
q := ExpandA(ρ) {AAA is generated and stored in NTT form as Â̂ÂA.}

2 µ ∈ {0, 1}384 := CRH(CRH(ρ||ttt1)||M)
3 c := SampleInBall(c̃)

4 ẃww1 := UseHintq(hhh,AAAzzz − cttt1.2
d, 2γ2) {NTT−1(Â̂ÂA · NTT(zzz)− NTT(c) · NTT(ttt1 · 2d)).}

5 return [∥ zzz ∥∞< γ1 − β] and [c̃ = H(µ, ẃww1)] and [# of 1’s in hhh is ≤ ω]

6

section, we discuss these synergies in detail and also highlight the challenges in implementing a unified cryptoprocessor for
Dilithium and Saber.

We would like to remark that synergies also exist in other lattice-based schemes. For example, CRYSTALS-Kyber [17]
shows great similarities with Saber [6] as both are based on module lattices. Hence, our study could be extended to integrate
Kyber along with Saber and Dilithium in the unified cryptoprocessor architecture. As a hardware implementation typically has
a long design cycle, in this paper we stay focused on unifying Saber with Dilithium, and by doing so we show that a compact
and unified cryptoprocessor for post-quantum digital signature and key exchange is feasible.

A. Polynomial multiplication

For multiplying two polynomials, the most commonly used algorithms are the schoolbook method, the Karatsuba method [18],
the Toom-Cook method [19], the Fast Fourier Transform or Number Theoretic Transform method [20], with the time complex-
ities O(n2), O(nlog2(3)), O(c(k) ·ne) where e = log(2k−1)/ log(k), and O(n log n) respectively. Different hybrid polynomial
multiplication techniques are available by combining the above-mentioned algorithms.

Dilithium [7] makes the Number Theoretic Transform (NTT) method an integral part of the protocol to compute polynomial
multiplications in least time. However, this brings a restriction on the choice of the coefficient-modulus in Dilithium as the
modulus must be a prime of a special form to enable the NTT method.

On the contrary, an implementation of Saber [6] could use any type of polynomial multiplication algorithm or a hybrid
of multiple algorithms. In Saber, the coefficient-moduli are powers-of-two and with that modular reductions become free of
cost if schoolbook or Karatsuba or Toom-Cook or any combination of them is used. In [21] the hardware implementation
of Saber uses a highly parallel schoolbook multiplier that computes one polynomial multiplication in just 256 cycles. An
NTT-based polynomial multiplication [22] in Saber requires computations with respect to a larger prime modulus and cannot
take advantage of free modular reductions.

When implementing a unified cryptoprocessor for both Dilithium and Saber, we have two options for computing polynomial
multiplications. The first option is to instantiate an NTT-based multiplier for Dilithium and a schoolbook multiplier (follow-
ing [21]) for Saber so that both schemes can be executed at their optimal speeds. This approach requires a large area in
hardware and could potentially have a negative impact on the clock frequency of the implementation due to the increased
routing complexity. The other option will be to instantiate a common polynomial multiplier for both schemes. In this case, the
common multiplier must be NTT-based as the Dilithium protocol makes the use of NTT an integral part of the protocol. With
the NTT-based multiplication, the temporary coefficient-modulus (which should be a prime) in Saber needs to be sufficiently
large so that correct results are computed.

B. Hash and Expandable output functions

Besides polynomial multiplications, Keccak-based [16] hash computations and pseudorandom number generations are used
in both Dilithium and Saber. For example, Saber uses SHAKE-128 for pseudorandom string generations and SHA3-256/512
for hash calculations. Similarly, Dilithium uses both SHAKE-128 and SHAKE-256 for pseudorandom string generations and
SHA3-256 for hash calculations. Since all of the SHAKE and SHA3 operations essentially use the Keccak sponge function
internally, a common Keccak core along with a wrapper will be enough to support the needs of both Dilithium and Saber.
The wrapper around the Keccak core will implement the functionalities of different SHAKE and SHA3 modes. Note, several
previous works [11], [21] showed that if a high-speed Keccak module is used in a lattice-based cryptoprocessor, then a lion
share of the resources is spent on implementing the high-speed Keccak core. Hence, by using a common Keccak core in the
hardware, we could greatly reduce the area of a unified cryptoprocessor for Saber and Dilithium.

We would like to remark that the Keccak module will not be specific to the designed signature and KEM schemes. Following
the standardization of Keccak as the SHA3 algorithm, several new generation commercial processors have integrated hardware
supports for Keccak. If these processors are extended to includ post-quantum signature and KEM, then their Keccak cores
could be reused.

C. Remaining scheme-specific building blocks

The remaining building blocks are of O(n) complexity and do not share many similarities. They mostly perform simple
additions, subtractions, packing, etc. To further reduce the area consumption one option would be to use the addition and
subtraction units present in the butterflies for NTT. This will decrease the area but make the design complex and dependable on
the availability of the butterfly units thus hindering the parallel computations. Therefore, in order to make the design simple and
easily configurable we decide to keep the remaining building blocks with their own simple addition subtraction units required.

In the next section, we discuss the various design decisions we took and various trade-offs that we considered during the
implementation of the common cryptoprocessor.

7

Fig. 1. The high-level design of the cryptoprocessor with the Saber modules in green, Diltihium’s modules in blue and common modules in yellow. For the
scheme-specific uncommon blocks, computational and architectural synergies exist.[Simplified - Other smaller building blocks are not included]

IV. OPTIMIZED IMPLEMENTATION

As described in the previous section, the proposed unified cryptoprocessor for Dilithium and Saber will have an NTT-based
polynomial multiplier, a Keccak-core and a SHA/SHAKE wrapper around it, and several scheme specific building blocks. The
first two are the most expensive in terms of both computation time and area requirements, and thus require very optimized
implementations for realizing a unified cryptoprocessor. Although the remaining scheme-specific blocks are computationally
cheap (thanks to their O(n) time complexities), their implementations as hardware-blocks could be significantly time consuming
and laborious as they require low-level bit, or byte or word manipulations and signed arithmetic. In this section we describe
how we implement the building blocks of the unified cryptoprocessor. Fig. 1 shows a high-level block diagram of the unified
cryptoprocessor.

A. NTT-based unified polynomial multiplier

In this section, we describe the implementation decisions we make for designing the NTT-based polynomial multiplier for
both Saber and Dilithium. To correctly perform NTT-based polynomial multiplications in Saber, we need to use a sufficiently
large prime as the temporary modulus p′ so that no actual modular reductions take place [22].

Prime selection for NTT in Saber: Saber’s secret polynomial coefficients are signed values in the range [-3,3], [-4,4], and
[-5,5] depending on the security level. Hence, for positive coefficients a modulus of order 23 × 213 × 256 = 224 is sufficient
but for negative coefficients, if we convert them to unsigned values by performing modular reduction by q = 213, then the
required modulus size increases to 213 × 213 × 28 = 234. Implementing a common NTT-based multiplier that supports 234

order modulus will become expensive in comparison to the one supporting 223 order modulus required by Dilithium. In [23],
[22], the designers also discuss a similar problem and mention that a 24-bit modulus can be used along with special provision
for signed number representation. However, we observe that if we still take a prime p′ of the order of 224 and convert the
negative coefficients to unsigned values modulo p′, that is in [0, p′ − 1], the modular reductions caused are ineffective and we
get the correct result. This is explained in Appendix A of this paper.

In this way, we need a common NTT core that supports a 24-bit prime for Saber and the 23-bit prime modulus of Dilithium.
Now we describe how we choose an appropriate prime p′ for Saber. Of all the modular arithmetic operations that are performed
during an NTT, modular multiplication is the most expensive in terms of both area and time. The original software source
code of Dilithium [7] uses the Montgomery modular reduction. We observe that a dedicated bit-parallel modular reduction unit
will be small and more efficient on hardware platforms as the prime q = 223− 213 +1 in Dilithium has a sparse structure and
therefore a fast modular reduction could be implemented using simple additions and subtractions. For Saber, we choose the
24-bit prime p′ in such a way that it resembles the prime of Dilithium closely.

Efficient modular reduction unit: If the two primes have similar structures, then their modular reduction circuits can be
unified very well to reduce the area overhead. Hence, we take p′ = 224 − 214 + 1 as the NTT-modulus of Saber. A circuit
diagram for the optimized modular reduction unit is shown in Fig. 2.

8

Fig. 2. Unified modular reduction unit for both Saber and Dilithium. The bit selection unit selects the different amount of bits required by the two schemes
for processing

Post-processing elimination: Dilithium’s official software implementation [7] uses an extra loop at the end of the inverse
NTT for scaling the output coefficients, as shown in [24]. In our implementation, these extra scaling-related multiplications
are removed by processing the coefficients using the following equation [25] during inverse NTT.

x/2 mod q = (x≫ 1) + x[0]× ((q + 1)/2) (1)

Here, q is the modulo and x is the result of the butterfly operation during inverse NTT. This way both the NTT and inverse
NTT are of the same cost and require no post-processing.

Algorithm 10: The Cooley-Tukey NTT algorithm [24]
1 Input : A vector x = [x0, · · · , xn − 1] where xi ∈ [0, p− 1] of degree n (a power of 2) and modulus q = 1 mod 2n
2 Input : Precomputed table of 2n-th roots of unity g, in bit reversed order
3 Output : x← NTT (x)
4 function NTT (x)
5 t← n/2
6 m← 1
7 while m < n do
8 k ← 0
9 for i← 0; i < m; i← i + 1 do

10 S ← g[m + i]
11 for j ← k; j < k + 1; j ← j + 1 do
12 U ← x[j]
13 V ← x[j + t].S mod q
14 x[j]← U + V mod q
15 x[j + t]← U − V mod q

16 k ← k + 2t

17 t← t/2
18 m← 2m

19 return

Internal architecture of NTT: Following the official reference code of Dilithium, we use the Cooley-Tukey (Alg. 10) and
Gentleman-Sande (Alg. 11) butterfly configurations for the NTT and inverse NTT respectively. Both butterfly configurations
are implemented in a unified butterfly core. Fig. 3 shows the internal blocks of the unified butterfly core. The multiplexers are
used to select the appropriate data-paths during the Cooley-Tukey and Gentleman-Sande butterfly operations. The arithmetic
circuits, namely modular multiplier, adder and subtracter, are all pipelined to achieve high clock frequency.

9

Fig. 3. Internal architecture of the butterfly unit for unified Cooley-Tukey NTT and Gentleman-Sande inverse NTT

As one butterfly core consumes two coefficients, and simultaneously produces two coefficients every cycle, we always keep
two coefficients in a single memory-word following [26]. That enables accessing two coefficients by just one memory-read
and storing two coefficients by just one memory-write.

Our NTT unit has two such butterfly cores in parallel to reduce the cycle count of NTT. To feed the two butterfly cores,
we spread the coefficients into two BRAM-sets. This spreading is necessary as one BRAM-set could feed only one butterfly
core due the limitations in the number of read/write ports. In this way, a polynomial of 256 coefficients occupies a total
of 128 memory-words of which 64 are in the first BRAM-set and the remaining 64 are in the other BRAM-set. At any
time during an NTT or inverse NTT, the two coefficients in a single memory-word have an index difference of l/2 where
l ∈ {N,N/2, N/4, . . . , 4, 2} during the outermost NTT-loops (Alg. 10), and l ∈ {2, 4, . . . , N/4, N/2, N} during the outermost
inverse NTT-loops (Alg. 11). In this way when the two butterfly cores load the jth and (j + l/2)th coefficients, they also get
the (j + 1)th and (j + l/2 + 1)th coefficients automatically. One NTT or inverse NTT operations take 512 clock cycles only.

Fig. 4 shows the arrangement of coefficients in memory words during NTT loop-iterations using a toy example. For the

Algorithm 11: The Gentleman-Sande inverse NTT algorithm [24], [25]
1 Input : A vector x = [x0, ·, xn − 1] where xi ∈ [0, p− 1] of degree n (a power of 2) and modulus q = 1 mod 2n
2 Input : Precomputed table of 2n-th roots of unity g−1, in bit reversed order
3 Input : n−1 mod q
4 Output : x← INTT (x)
5 function INTT (x)
6 t← 1
7 m← N/2
8 while m > 0 do
9 k ← 0

10 for i← 0; i < m; i← i + 1 do
11 S ← g−1[m + i]
12 for j ← k; j < k + 1; j ← j + 1 do
13 U ← x[j]
14 V ← x[j + t]
15 x[j]← (U + V)/2 mod q
16 W ← U − V mod q
17 x[j + t]← (W.S)/2 mod q

18 k ← k + 2t

19 t← 2t
20 m← m/2

21 return

10

Fig. 4. Coefficients storage for 3 iterations of NTT on a polynomial of coefficient size 16

simplicity of the explanation when we say ‘coefficient i’ we actually mean the coefficient with the index i. During the NTT
loops, the newly generated coefficients are written back in the BRAMs in such as way that during the next iteration of the NTT
loop, the required coefficients for each butterfly can be read as a pair from the memory. In the first iteration, the coefficients
(shown in blue color in Fig. 4) zero-and-eight are input to the first butterfly unit; and the coefficients one-and-nine are input
to the second butterfly unit. After the first iteration, we want the processed coefficients eight-and-nine to be stored in BRAM
1, at the address where currently coefficients four-and-five are stored. This will simplify the coefficient read pattern during the
next iteration of the loop. Because coefficients four-and-five have not been processed yet, we can not write new values to their
memory location. Hence, we read the coefficients four-and-five, and similarly twelve-and-thirteen immediately after reading
the coefficients zero-and-one, and eight-and-nine respectively. We do similar for every iteration and this approach avoids the
read-write conflict and simplifies the read and writes for both NTT and Inverse NTT.

B. SHA3-256/512 and SHAKE-128/256

For implementing the Keccak-based hash and expandable output functions, we instantiate a single high-speed Keccak core
in the proposed cryptoprocessor architecture. Implementation of the Keccak core is similar to the high-speed Keccak core
available on the website of Keccak-team [27]. We use a wrapper module around the Keccak core to perform parsing of input
and output data-bits. Additionally, the state buffer has been changed so that the pseudorandom polynomial coefficients can be
generated in scheme-specific optimal representations and then stored immediately in the memory of the cryptoprocessor. This
strategy helps reducing the overall cycle counts for both Dilithium and Saber.

Saber’s public polynomials in AAA have 13-bit coefficient size and they are generated by the expandable output function
SHAKE-128 (Alg. 1 and 2). When these polynomials are multiplied, they are converted into the NTT representation in our
unified cryptoprocessor. As described in Sec. IV-A, the NTT unit requires its operand data to be present in ‘two coefficients
per BRAM word’ format. One option for processing the public polynomials will be to generate a continuous bit stream in
64-bit words (which is the default output format of Keccak), then write them in BRAMs, and later parse them into 13 bit
coefficients using a separate parser hardware. This approach is sequential by nature and results in a bloated cycle count. In
order to avoid such a redundant memory read/write step, we modify the output buffer of Keccak to directly produce a pair of
13-bit coefficients during the generation of the public matrix AAA. However, this strategy requires a book-keeping mechanism as
the output length of a SHAKE-128 squeeze operation is 1,344 bits which is not a multiple of 13. Therefor, after each squeeze
of SHAKE-128 there will be leftover bits that must be prepended to the output string generated by the next SHAKE-128
squeeze operation. We observe that during the generation of AAA in Saber (Alg. 1 and 2), the number of leftover bits is always
an even number in [0, 24]. We use this observation to simplify the implementation of the Keccak-output buffer.

The prepending of the leftover bits to a newly generated SHAKE-128 squeeze output requires shifting-and-filling of the
buffer bits. As the size of the Keccak output-buffer (when operated as SHAKE-128) is 1,344 bits which is quite large, we
investigated efficient implementation techniques that reduce the area-overhead without affecting the cycle count. The first and
very naive method that comes to our mind is to implement a simple multiplexer that assigns the output buffer with 1344 bits
of the Keccak state and the leftover bits. But since there can be 13 (even numbers in [0, 24]) such possibilities we will require
a 12-to-1 multiplexer for assigning to a buffer of size 1,368 (=1344+24) bits. With this implementation option, there are 13
shift-possibilities and as a consequence the multiplexing overhead is ≈8000 LUTs, which is large. Our aim is to make a very
efficient and lightweight design on hardware, therefore we need a much better solution.

The leftover bits are handled using a small ‘left-over-bits buffer’. The content of this left-over-bits buffer is then concatenated
at the beginning of the output buffer. We want to reduce the LUT count by reducing the buffers, but we also need to make the
design simple and ensure that it does not increase the timing of the design. The ability of our design to execute data-independent
operations in parallel helps us here. It gives us the freedom to slow the Keccak squeeze as it is run in parallel with the NTT
and finishes way before NTT. We decide to just make three inter-meditate buffers for zero, two, and four shifts, for both the
output buffer and left-over-bits buffer, as shown in Fig. 5. After the Keccak squeeze is done we write the remaining bits to the
left-over-bits buffer. In order to avoid using a multiplexer to decide on the number of remaining bits we need to pick, we just
write the 24 bits as the remaining bits. Then based on the count of remaining bits we shift the left-over-bits buffer by four or

11

two bits towards left. Once the left-over-bits buffer is aligned. We start shifting both the output buffer and left-over-bits buffer
towards left by four or two. The values pushed out by the left-over-bits buffer are put in front of the output buffer.

Fig. 5. The output buffer containing the squeeze output in green and the left-over-bits buffer in blue containing the remaining bits of the previous squeeze.
This figure shows an example of how the two buffers are shifted when there are 18 remaining bits.

C. Samplers

Saber uses binomial sampler in which integers are sampled from a centered binomial distribution as described in Sec. II.
Dilithium requires three different kinds of rejection sampling units for coefficient generation. To use them three different
instructions are provided. The uniform rejection sampling used for generating the public matrix vector requires 3 bytes of
Keccak output to generate one coefficient, the eta-uniform rejection sampling used for generating secret key coefficients
consumes one byte of Keccak output to generate two coefficients, and gamma-rejection sampling used for generating the y
polynomial consumes nine bytes of Keccak output to generate four coefficients. Although we can’t make a common block for
all the different types of sampling, we try to put in an overall optimization in the cycle count and area.

For the uniform, and the η sampling, we need to use 24 bits and 4 bits respectively. These utilize the Keccak output buffer
fully after every squeeze so we need to extract 4 or 24 bit output after Keccak squeeze. The γ sampling outputs 18 bit values
and this does not utilize the Keccak output fully, and after every squeeze 8 bits are leftover. The maximum squeezes required
for generation are 4 so we increase the size of leftover buffer to 32. The same approach of shifting the output buffer and
leftover bit buffer described above can also be used for this sampling. Now we have the big Keccak output buffer giving
out 5 different types of outputs 4 bits, 13 bits, 18 bits, 24 bits, and 64 bits. This is controlled using a multiplexer, which in
hardware would mean making copies of the big buffer 5 times and based on multiplexer input gives out the required output.
This is again very expensive and in order to reduce this we club together the squeezes for 4, 24, and 64 bits into one 192 bit
buffer. So now, we have 3 multiplexer outs from the smaller buffer for three types of squeezes but only one 192bit squeeze
out instead of the other three. Now our Keccak output buffer only has three different shift outs. Thus we save around 1200
LUTs. We also add the optimized implementation of packing unpacking these polynomials using a common buffer for all the
different kinds of packing modes and unpacking modes required by Dilithium.

D. Memory

For the Dilithium variant with the NIST security level 2, the public matrix vector has dimensions 4× 4. During signing we
need to precompute and store the secret vectors s1 (4× 1), s2 (4× 1), and t0(4× 1) in the NTT representation, thus requiring
storage for 12 polynomials. Storing the entire public matrix in the memory makes the signing operation faster. We now require
to store 28 polynomials before the signing starts. During signing operation, we need one storage to store the results temporary
results.

Saber has a public matrix with the dimensions 3 × 3. We will need to have storage for three secret polynomials and nine
public polynomials in the NTT representation. It can be seen that the overall memory requirement of the cryptoprocessor is
determined by Dilithium as it consumes more memory than Saber. Two coefficients of every polynomial are stored together in
one 64 bit word and therefore, one polynomial occupies 128 address spaces. Parallel memory organization is used to ensure
efficient load and storage of polynomials. This is especially important for parallel execution of NTT and Keccak.

With all the constraints in consideration and flexibility requirements in place, the implementation of Saber requires only four
BRAM36K elements, owing to its small matrix and vector dimensions and small polynomial coefficients (13 bits). However,
this was not sufficient for Dilithium as the public matrix and other vectors have huge dimensions. Additionally, Dilithium uses

12

a coefficient size of 23 bits. So, the memory was split across four major blocks, with each of them having three BRAM36K
elements. This is done to support the storage requirement of Dilithium and enable parallel execution of NTT and Keccak.

The constants for NTT and inverse NTT computations are kept in a ROM which is also interpreted using BRAMs in our
implementation. Along with this the program controller, for loading all the instructions at once in a separate instruction memory
and then handling all the data independent executions in parallel, requires one36k and one18k BRAM.

E. Remaining building blocks

The output given after the polynomial multiplication has now two coefficients per word instead of 4 coefficients per word
storage style used in [21]. Therefore, modules UnPack, AddPack, and AddRound individually now take at most twice the
number of clock cycles. However, we are able to avoid the extra clock cycles required for pre-processing the input for feeding
into these modules. Decompose and Power2Round are implemented as per the specification, consuming 128 clock cycles for
processing one polynomial. Since the Decompose module required by MakeHint and UseHint is already implemented, we
just implement the equality checkers which return the desired output. BS2POLVEC now converts byte-stream to vector form
as required by the NTT module for one polynomial at a time. Modules Copy, Verify, and CMOV work the same way as
provided in [21]. We are also able to reduce the overall area consumption of these building blocks by using common addition,
subtraction, and polynomial read and write control units, as described in section III-C.

In the coming up sections, we discuss the timing results and area consumption in comparison with the existing works, and
the future scope of the design.

F. Parallel processing of Keccak and polynomial arithmetic

In [28], [29] overlapping of data-independent computations at block levels is used to reduce the clock cycle counts of
several lattice-based post-quantum schemes. Overlapping of computations in an instruction-set cryptoprocessor is relatively
more challenging than overlapping computations in a block-unrolled architecture. In [21] all the instructions, including data-
independent, are executed in a series to compute the Saber protocol. In our work we apply overlapping of data-independent
computations in the context of an instruction-set architecture and execute data-independent Keccak-based and polynomial
arithmetic-based operations in parallel. For example, pseudorandom polynomials are generated using the Keccak core and
they are immediately consumed by the NTT unit one-by-one to compute polynomial multiplications. This strategy effectively
reduces the overall cycle count at the cost of a negligible area overhead.

To support the parallel execution of Keccak and polynomial arithmetic, we split the memory unit into four BRAM sets.
While the NTT unit occupies read and write ports of any two BRAM sets, the Keccak unit works with the remaining two sets.
We also add a program controller unit which loads all the instructions in an Instruction RAM and then send them one by one
to the compute core for processing in parallel or sequence as specified in the instruction. The two types of instructions are
shown in Fig. 6 and they are stored together along with 4 control bits in the Instruction RAM.

Fig. 6. Format of the instructions stored in Instruction Memory

V. TIMING AND UTILIZATION RESULTS

The proposed unified cryptoprocessor architecture is described entirely in Verilog and it is implemented for FPGA and ASIC
platforms. For FPGA, the proposed architecture is synthesized and implemented using Vivado 2019.1 tool suite for the target
platform Zynq Ultrascale+ ZCU102 with area-optimized implementation strategy. The FPGA implementation achieves 200
MHz clock frequency. For ASIC, the proposed architecture is synthesized with UMC 65nm library and it achieves 370 MHz
clock frequency.

13

TABLE I
CYCLE COUNT FOR OPERATIONS IN SABER-KEM AND DILITHIUM-2

Operation Cycle count Latency
FPGA ASIC

Saber.KEM.Keygen 10,980 54.9 29.6
Saber.KEM.Encaps 14,504 72.5 39.2
Saber.KEM.Decaps 18,955 94.7 51.2
Dilithium.Gen 15,618 78.0 42.2
Dilithium.Signpre 8,496 42.4 22.9
Dilithium.Sign 20,914 104.5 56.5
Dilithium.Signpost 3,595 17.9 9.7
Dilithium.Verify 17,713 88.5 47.8

A. Timing Results

In Table I, we present the cycle count and latency (in µs) for the operations of Saber (key generation, encapsulation,
decapsulation) and Dilithium-II (key generation, sign, verify). With 200 MHz clock frequency in FPGA, the CCA-secure key
generation, encapsulation and decapsulation operations for Saber take 54.9, 72.5 and 94.7 µs, respectively. The ASIC imple-
mentation with 370 MHz clock frequency after the synthesis can perform the key generation, encapsulation and decapsulation
operations for Saber in 29.6, 39.2 and 51.2 µs, respectively.

The Dilithium signature generation operation has a loop and it iterates until a valid signature is generated. In Table I, we
report the performance for the best-case scenario where the valid signature is generated after the first loop iteration. We also
divide signature generation operation into three parts (pre-sign, sign, post-sign) and report their performances separately. For
a signature generation, the pre-sign and post-sign parts are performed only once while sign part is repeated until a valid
signature is generated. For the best-case scenario, the key generation, signature generation and signature verification operations
for Dilithium-II take 78.0, 164.8 and 88.5 µs, respectively, in the FPGA platform. The ASIC implementation with 370 MHz
clock frequency after the synthesis can perform the key generation, signature generation and signature verification operations
for Dilithium-II in 42.2, 89.1 and 47.8 µs, respectively.

B. Utilization Results

In the Table II, we present the detailed utilization of each building blocks in the cryptoprocessor for UltraScale+ ZCU102
platform. The proposed cryptoprocessor achieves 200 MHz clock frequency and it uses 18,040 LUTs (6.5%), 9,101 DFFs
(1.6%), 4 DSPs (0.1%) and 14.5 BRAMs (1.5%) only. The number of BRAMs in our cryptoprocessor is determined by the
memory requirement of Dilithium since it is significantly more memory-consuming than Saber. The Keccak and multiplier
units together consume more than half of the overall area. The multiplier has two butterfly units and each butterfly unit requires
two DSP blocks for performing one 24-bit×24-bit multiplication. Note that we use one BROM to store precomputed powers
of 2n-th root of unity values for NTT and inverse NTT operations. The data memory has four BRAM-sets where each set is
a 64-bit wide and 1,536-words deep memory element. They consume 268 LUTs and 12 BRAMs in total.

We also synthesized our design with UMC 65nm ASIC library using Cadence Genus synthesis tool. The proposed crypto-
processor achieves 370 MHz with 0.301mm2 area (≈200.6 kGE) excluding on-chip memory for storing data and precomputed
powers of 2n-th root of unity.

C. Comparison with the existing results

The proposed cryptoprocessor is compared with related works in the literature in terms of area, performance and flexibility
for Saber and Dilithium-II as shown in Table III and Table IV, respectively. In the literature, there are several works targeting an
unified architecture that supports multiple PQC schemes [11], [12], [30]. In [11], the authors present Sapphire, a cryptoprocessor
coupled with RISC-V processor implemented in ASIC for various lattice-based PQC schemes. It presents one of the earliest
works for ASIC platform and supports parameter sets for NTT-friendly Round 2 candidates in NIST’s PQC standardization. It
uses constant-geometry NTT algorithm to reduce area cost of the memory blocks. It does not support or provide performance
results for Saber while the results provided for Dilithium are using Round-2 specifications. For a fair comparison, we compare
Round-2 Dilithium-II with dimensions (4,3) and Round-3 Dilithium-II with dimensions (4,4). Compared to Sapphire, our FPGA
and ASIC implementations show up to ×23 and ×42 better performance, respectively.

In [12], the authors present a RISC-V architecture coupled with optimized hardware accelerators for improving the perfor-
mance of lattice-based PQC algorithms. It provides support for Crystals-Kyber, NewHope and Saber schemes and targets ASIC
platform. Compared to the Saber implementation in [12], our FPGA and ASIC implementations show up to 304× and 564×
better performance, respectively. Also, their implementation consumes more area then our ASIC implementation. The work
in [30] presents a HW/SW co-design of Crystals-Kyber and Saber schemes. Our implementation shows superior performance
in terms of both performance and area consumption as we target an implementation entirely in hardware.

14

TABLE II
UTILIZATION REPORT OF THE CRYPTOPROCESSOR

Unit LUTs FFs DSPs BRAMs
ComputeCore 16,949 8,576 4 13
⌊AddPack 233 161 0 0
⌊AddRound 350 362 0 0
⌊BS2POLVEC 343 360 0 0
⌊Unpack (Saber) 184 196 0 0
⌊Verify (Saber) 101 208 0 0
⌊CMOV 13 34 0 0
⌊COPY 8 34 0 0
⌊Decompose 453 286 0 0
⌊Power2Round 116 62 0 0
⌊MakeHint 306 119 0 0
⌊UseHint 603 393 0 0
⌊EncodeH 186 231 0 0
⌊Pack/Unapck (Dilithium) 2,015 1,118 0 0
⌊SampleInBall 476 258 0 0
⌊Refresh 4 7 0 0
⌊Verify (Dilithium) 27 69 0 0
⌊Sampler 174 93 0 0
⌊Memory 268 8 0 12
⌊Multiplier 2,454 1,055 4 1
⌊Keccak 8,653 3,514 0 0
ProgramController 1,120 248 0 1.5
Total 18,040 9,101 4 14.5

To the best of our knowledge, there are three FPGA-based implementations of Dilithium [31], [32], [33] in the literature.
Zhou et al. [31] propose a HW/SW co-design solution for improving the performance of Dilithium compared to the full-software
implementation. They offload computationally intensive operations such as SHA/SHAKE and polynomial multiplication to the
hardware while keeping the rest of the operation in the software. Although their hardware implementation consumes small
area, our pure-hardware solution shows up to two order of magnitude better performance compared to their HW/SW co-
design solution. In [32], the authors present three high-performance architectures for key generation, signature generation and
signature verification operations of Dilithium scheme targeting FPGA platform. Their three implementations can perform key
generation, signature generation and signature verification operations in 36, 55 and 66 µs, respectively. Although they show
slightly better performance than our implementation, their implementation for signature generation consumes 3.7×, 8.6×,
241.2× and 10× more LUTs, DFFs, DSPs and BRAMs compared to our implementation. Moreover, our work can perform
all three operations in a single implementation and it provides support for Saber scheme as well. The work in [33] presents a
Dilithium implementation for low-end Artix-7 FPGAs. They target reducing LUT utilization by employing extra DSP units for
computations. Our implementation shows slightly better performance and uses less hardware resources. Their implementation
uses 1.5× more LUTs and 11.2× more DSPs units. For the best-case scenario, our implementation shows 1.47×, 1.08× and
1.36× better performance for the key generation, signature generation and signature verification operations, respectively.

In [34], the authors evaluate the hardware performance of Round-2 PQC signature schemes using high-level synthesis (HLS)
tool. They present different architecture for each operation and they apply various HLS directives (i.e., pipelining) to improve
the performance of the implementations. Although HLS directives show slight performance improvements, our implementation
is superior in terms of both area and performance.

There are several works in the literature implementing Saber in hardware for FPGA [21], [35], [36], [37], [38] and ASIC [39],
[40] platforms. Compared to the work in [21], our FPGA implementation uses fewer LUTs even though we support both Saber
and Dilithium schemes. However, their implementation shows better performance due to their very fast schoolbook polynomial
multiplication unit with 256 processing cores. As we target a compact architecture supporting both Saber and Dilithium, we
use an NTT-based polynomial multiplier unit with just two processing elements.

In [35], the authors propose a high-performance FPGA implementation of Saber. Compared to our work, their implementation
shows similar performance at the expense of using 64× more DSP units. In [37], the authors present a lightweight FPGA
implementation of Saber. Compared to their work, our cryptoprocessor shows up to 6.4× better performance while using 8×
less DSP units. Mera et al. [38] presents a HW/SW co-design for Saber with small LUT and FF consumption. However, their
implementation shows up to 68× worse performance compared to our design implemented entirely in hardware.

In [36], a compact cryptoprocessor for Saber is proposed. The proposed work presents a novel strategy to improve the
performance of polynomial multiplication operation. Their implementation shows slightly better performance compared to
our work and uses less hardware resources. As we target both Saber and Dilithium which requires NTT-based polynomial
multiplier and works with large dimension modules, our architecture consumes more area and memory. In [39] and [40], two
high-performance ASIC implementations for Saber are presented. Compared to our ASIC implementation, they show better area
consumption and performance. However, their implementations are optimized for Saber scheme as our work targets multiple

15

TABLE III
COMPARISON TABLE FOR SABER WITH MODULE DIMENSION 3

Work
Support for

Platform
Performance Freq. Area

Multiple (in µs) (MHz) (mm2 for ASIC)
Schemes KG/E/D∗ LUT/FF/DSP/BRAM

[12] Yes ASIC/65nm 16.7K/21.9K/26.4K 45.47 0.914 mm2

[39] No ASIC/65nm 7.1/7.1/9.3 1000 0.314 mm2

[40] No ASIC/40nm 2.7/3.6/4.3 400 0.38 mm2

[30]† Yes Artix-7 3.6K/4.9K/5.5K 62.5 20.6K/11.8K/13/36.5
[38]† No Artix-7 3.2K/4.1K/3.8K 125 7.4K/7.3K/28/2
[37] No Artix-7 –/467.1/527.6 100 6.7K/7.3K/32/0
[36] No UltraScale+ 48.9/63.2/78.5 250 10.1K/7.7K/0/3
[35]† No UltraScale+ -/60/65 322 12.5K/11.6K/256/4
[21] No UltraScale+ 21.8/26.5/32.1 250 23.6K/9.8K/0/2

Thisa Yes UltraScale+ 54.9/72.5/94.7 200 18.0K/9.1K/4/14.5
ASIC/65-nm ≈29.6/39.2/51.2 370 ≈0.821 mm2

∗: KG: Key generation, E: Encapsulation, D: Decapsulation.
†: HW/SW co-design.
a: Area of memory (≈0.520 mm2) is estimated.

TABLE IV
COMPARISON TABLE FOR DILITHIUM-II

Work
Support for

Platform
Performance Freq. Area

Multiple (in µs) (MHz) (mm2 for ASIC)
Schemes KG/S/V∗ LUT/FF/DSP/BRAM

[11]d,f Yes ASIC/40-nm 1.8K/7.1K/2.5K 72 0.28 mm2

[34]a
No HLS/Artix-7

1.4K/-/- 119 17.6K/86.6K/-/-
[34]b,f -/10.7K/- 114 21K/90.5K/-/-
[34]c -/-/1.8K 114 15.1K/65.2K/-/-
[31]† No Zynq-7000 -/8.8K/9.9K 100 2.6K/-/-/-
[32]a

No UltraScale+
36/-/- 350 54.1K/25.2K/182/15

[32]b,e -/55/- 333 68.4K/86.2K/965/145
[32]c -/-/66 158 61.7K/34.9K/316/18
[33]a

No Artix-7
84.9/-/- 221 11.0K/7.2K/45/11

[33]b,f -/427.9/- 179 18.0K/9.1K/45/15
[33]c -/-/98.3 200 12.1K/7.5K/45/11

[33]d,e No Artix-7 115.0/178.3/120.7 163 27.4K/10.6K/45/15
[33]d,f 115.0/469.8/120.7

Thisd,e,g Yes UltraScale+ 78.0/164.8/88.5 200 18.0K/9.1K/4/14.5
ASIC/65-nm ≈42.2/89.1/47.8 370 ≈0.821 mm2

∗: KG: Key generation, S: Sign, D: Verify.
†: HW/SW co-design.
a: Implementation for key generation operation.
b: Implementation for sign operation.
c: Implementation for verify operation.
d: Implementation for all operations.
e: Reports sign performance for best-case scenario.
f : Reports sign performance for average-case scenario.
g : Area of memory (≈0.520 mm2) is estimated.

schemes.
In the next section, we discuss the future scope of the work and conclude the paper.

VI. EXTENDING SUPPORT FOR OTHER SCHEMES

We intend to include support for all the different variants of Saber and Dilithium. We also intend to include Crystals-Kyber
to our cryptoprocessor. Kyber also uses polynomials of coefficients size 256, the same as Saber and Dilithium. Kyber uses
NTT-based polynomial multiplication where the prime is 12-bit. A minor datapath adaption of the existing NTT architecture
would enable NTTs for Kyber. Furthermore, Kyber also uses the Keccak-based SHA3 and SHAKE functions as Dilithium
and Saber do. These hash functions are already present in the proposed cryptoprocessor and thus pseudorandom number
generation and hash calculations in Kyber can be supported. Similar to Saber, Kyber also uses binomial sampling. Although
the parameters used by the binomial samplers in Saber and Kyber are not always the same, the controller unit and parts of
the existing binomial sampler datapath could be adjusted to extend support for Kyber. Although the complementary building
blocks used by Kyber are not very similar to those used in the current version of the unified cryptoprocessor, they could
be added to the architecture. Owing to the small coefficient size and module dimension, the memory blocks available in the
cryptoprocessor are also sufficient for computing all security-levels of Kyber.

16

VII. CONCLUSION

By designing a unified hardware architecture for the two finalists Crystals-Dilithium and Saber KEM of the NIST Post
Quantum Cryptography Standardization, we showed that it is possible to realize a compact yet fast cryptoprocessor for
performing both post-quantum key-exchange and digital signature on ASIC and FPGA platforms.

The optimized cryptoprocessor architecture greatly benefits from the algorithmic and structural similarities in the two
implemented cryptographic schemes. The most expensive operations in both Dilithium and Saber are polynomial multiplications,
and Keccak-based SHA3 and SHAKE computations. We demonstrated that by instantiating a unified NTT-based polynomial
multiplier, we can compute the polynomial multiplications of both schemes. Furthermore, by using a special prime modulus for
computing the NTTs of Saber, we can greatly minimized the area overhead of the unified multiplier compared to a Dilithium-
only multiplier. Similarly, starting from a high-speed Keccak core, we designed an optimized wrapper around it to pre-process
the inputs and post-process the outputs of SHA3 and SHAKE on-the-fly, and by doing so we effectively reduced the number of
unnecessary memory read and write cycles. Finally, with all the optimizations, our unified cryptoprocessor on a Xilinx FPGA
computes Saber’s key generation, encapsulation, and decapsulation in 54.9, 72.5 and 94.7 µs respectively; and Dilithium-II’s
key generation, signing (best case) and verification in 78.0, 164.8 and 88.5 µs respectively. The designed cryptoprocessor is
even faster or smaller than several of the previously published works on Dilithium-only implementations on hardware platforms.

In the future, we intend to integrate more lattice-based schemes while keeping the design lightweight. We also intend to
design and implement unified countermeasures for protecting our cryptoprocessor from side-channel and fault attacks in low
time and area overheads.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by the Semiconductor Research Corporation through SRC task 3043.001.

APPENDIX A
PROOF OF USING A 24-BIT PRIME FOR SABER NTT

The idea for using NTT for Saber’s polynomial multiplication, relied on the fact that we can always select a prime big
enough to avoid any modular reduction. However, it is important to note that using too big a prime effects the cost of hardware
adversely. Secret polynomial have signed coefficients and we get the following two options to deal with them:
• Convert signed coefficients to mod q(= 213).

Required prime > 213 · 213 · 256 = 234.
• Coefficients have signed bit representation.

Required prime > 5 · 213 · 256 = 10485760(≈ 224).
While the first option leads to very expensive multiplication and reduction units, the second option requires a special imple-
mentation to deal with signed representation to treat these coefficients. In the following proof we show how we can use a
24-bit prime for mod q representation.

A. Proof
Let us say we have two polynomials a(x) and b(x) of degrees n = 256 each. Coefficients of a(x) are in range [−5, 5] and

coefficients of b(x) are in range [0, 213 − 1]. Then we define polynomials c(x) as the multiplication of the two polynomials
a(x) and b(x) i.e., c(x) = a(x) · b(x). Then the coefficients of c(x) will be of the following form:

c0 = a0 · b0 − a1 · bn−1 − a2 · bn−2 · · · − an−1 · b1

c1 = a0 · b1 + a1 · b0 − a2 · bn−1 · · · − an−1 · b2

...

cn−1 = a0 · bn−1 + a1 · bn−2 + a2 · bn−3 · · ·+ an−1 · b0
Let’s consider the cases for cn−1 as an example . If we use a prime modulus p > 5 · 213 · 256 = 10485760(≈ 224), thein the

case when all the secret polynomial coefficients are positive,the maximum value for cn−1 would be 213.5.256 so taking this
value mod p won’t lead to any modular reduction. In the case when all coefficients are negative we’ll convert them to mod p
which will give us a maximum possible value as (p− 1) · 213 · 256 which is clearly much than our prime p. This will lead to
modular reductions however, they won’t be harmful. We can rewrite cn−1 as

cn−1 = (
∑

bi0) · 0 + (
∑

bi1) · 1 + (
∑

bi2) · 2 + · · ·+ (
∑

bip−2
) · p− 2 + (

∑
bip−1

) · p− 1

17

, where, bik = bi for ai = k.
We can rewrite this as:

cn−1 = c′n−1 + c∆ · p

, where, c′n−1 is the coefficient when the the secret polynomial is not converted to signed representation, i.e,
c′n−1

= (
∑

bi0) · 0 + (
∑

bi1) · 1 + (
∑

bi2) · 2 + · · ·+ (
∑

bi−2) · −2 + (
∑

bi−1) · −1

So when we take cn−1 mod p we will get c′n−1 and just get rid of the extra factor c∆. Therefore, a small 24 bit prime
number greater than 10485760 is sufficient for Saber.

REFERENCES

[1] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm for elliptic curves,” Quantum Info. Comput., vol. 3, no. 4, p. 317–344, Jul. 2003.
[2] F. Arute1, K. Arya, R. Babbush, D. Bacon1, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen,

Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger,
M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V.
Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean, M. McEwen, A. Megrant,
X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G.
Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. S. ans Vadim Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White,
Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using a programmable superconducting processor,” Nature, 2019,
https://doi.org/10.1038/s41586-019-1666-5.

[3] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R. Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier et al., “Classic
mceliece: conservative code-based cryptography,” Submission to the NIST Post-Quantum Standardization project, 2017.

[4] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, G. Seiler, and D. Stehle, “CRYSTALS-KYBER,” Proposal
to NIST PQC Standardization, Round3, 2021, https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

[5] C. Chen, O. Danba, J. Hoffstein, A. Hulsing, J. Rijneveld, J. M. Schanck, P. Schwabe, W. Whyte, Z. Zhang, T. Saito, T. Yamakawa, and K. Xagawa,
“NTRU,” Proposal to NIST PQC Standardization, Round3, 2021, https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

[6] J.-P. D’Anvers, A. Karmakar, S. S. Roy, F. Vercauteren, J. M. B. Mera, M. V. Beirendonck, and A. Basso, “SABER,” Proposal to NIST PQC
Standardization, Round3, 2021, https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

[7] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Dilithium,” Proposal to NIST PQC
Standardization, Round3, 2021, https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

[8] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “FALCON,” Proposal to
NIST PQC Standardization, Round3, 2021, https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

[9] J. Ding, M.-S. Chen, A. Petzoldt, D. Schmidt, B.-Y. Yang, M. Kannwischer, and J. Patarin, “FALCON,” Proposal to NIST PQC Standardization, Round3,
2021, https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions.

[10] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson,
and D. Smith-Tone, “Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process,” NISTIR 8309, 2020,
https://doi.org/10.6028/NIST.IR.8309.

[11] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A configurable crypto-processor for post-quantum lattice-based protocols,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2019, no. 4, pp. 17–61, 2019. [Online]. Available: https://doi.org/10.13154/tches.v2019.i4.17-61

[12] T. Fritzmann, G. Sigl, and J. Sepúlveda, “Risq-v: Tightly coupled risc-v accelerators for post-quantum cryptography,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2020, no. 4, p. 239–280, Aug. 2020. [Online]. Available: https://tches.iacr.org/index.php/TCHES/article/view/8683

[13] C.-M. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C.-J. Shih, and B.-Y. Yang, “Ntt multiplication for ntt-unfriendly rings: New speed records
for saber and ntru on cortex-m4 and avx2,” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2021, no. 2, p. 159–188, Feb.
2021. [Online]. Available: https://tches.iacr.org/index.php/TCHES/article/view/8791

[14] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “SABER,” Proposal to NIST PQC Standardization, Round2, 2019,
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions.

[15] V. Lyubashevsky, “Fiat-shamir with aborts: Applications to lattice and factoring-based signatures,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2009, pp. 598–616.

[16] National Institute of Standards and Technology. 2015., “SHA-3 standard: Permutation-Based Hash and Extendable-Output Functions,” FIPS PUB 202,
2015.

[17] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber: a cca-secure module-
lattice-based kem,” in 2018 IEEE EuroS&P. IEEE, 2018, pp. 353–367.

[18] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital numbers by automatic computers,” Doklady Akademii Nauk, vol. 145, no. 2, pp.
293–294, 1962.

[19] A. L. Toom, “The complexity of a scheme of functional elements realizing the multiplication of integers,” Soviet Mathematics Doklady, vol. 3, no. 4,
pp. 714–716, 1963.

[20] D. Knuth, The Art of Computer Programming, Volume 2. Third Edition. Addison-Wesley, 1997.
[21] S. S. Roy and A. Basso, “High-speed instruction-set coprocessor for lattice-based key encapsulation mechanism: Saber in hardware,” IACR Trans.

Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 4, pp. 443–466, 2020. [Online]. Available: https://doi.org/10.13154/tches.v2020.i4.443-466
[22] C. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C. Shih, and B. Yang, “NTT multiplication for ntt-unfriendly rings new speed records for

saber and NTRU on cortex-m4 and AVX2,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 2, pp. 159–188, 2021. [Online]. Available:
https://doi.org/10.46586/tches.v2021.i2.159-188

[23] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: tightly coupled RISC-V accelerators for post-quantum cryptography,” IACR Trans. Cryptogr. Hardw.
Embed. Syst., vol. 2020, no. 4, pp. 239–280, 2020. [Online]. Available: https://doi.org/10.13154/tches.v2020.i4.239-280

[24] M. Scott, “A note on the implementation of the number theoretic transform,” in Cryptography and Coding - 16th IMA International Conference,
IMACC 2017, Oxford, UK, December 12-14, 2017, Proceedings, ser. Lecture Notes in Computer Science, M. O’Neill, Ed., vol. 10655. Springer,
2017, pp. 247–258. [Online]. Available: https://doi.org/10.1007/978-3-319-71045-7 13

[25] F. Yaman, A. C. Mert, E. Öztürk, and E. Savas, “A hardware accelerator for polynomial multiplication operation of CRYSTALS-KYBER PQC
scheme,” in Design, Automation & Test in Europe Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5, 2021. IEEE, 2021, pp.
1020–1025. [Online]. Available: https://doi.org/10.23919/DATE51398.2021.9474139

[26] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede, “Compact ring-lwe cryptoprocessor,” in Cryptographic Hardware and Embedded
Systems – CHES 2014, L. Batina and M. Robshaw, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 371–391.

18

[27] K. Team, “Keccak in VHDL: High-speed core,” https://keccak.team/hardware.html, Accessed on November 2019.
[28] K. Gaj, “Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization Process Using FPGAs,”

NIST PQC Round 3 Seminars, October 2020, https://csrc.nist.gov/projects/post-quantum-cryptography/workshops-and-timeline/round-3-seminars.
[29] V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T. Nguyen, and K. Gaj, “Implementation and benchmarking of round 2 candidates

in the NIST post-quantum cryptography standardization process using hardware and software/hardware co-design approaches,” IACR Cryptol. ePrint
Arch., vol. 2020, p. 795, 2020. [Online]. Available: https://eprint.iacr.org/2020/795

[30] T. Fritzmann, M. Van Beirendonck, D. B. Roy, P. Karl, T. Schamberger, I. Verbauwhede, and G. Sigl, “Masked accelerators and instruction set extensions
for post-quantum cryptography.” IACR Cryptol. ePrint Arch., vol. 2021, p. 479, 2021.

[31] Z. Zhou, D. He, Z. Liu, M. Luo, and K.-K. R. Choo, “A software/hardware co-design of crystals-dilithium signature scheme,” ACM Trans.
Reconfigurable Technol. Syst., vol. 14, no. 2, Jun. 2021. [Online]. Available: https://doi.org/10.1145/3447812

[32] S. Ricci, L. Malina, P. Jedlicka, D. Smékal, J. Hajny, P. Cibik, P. Dzurenda, and P. Dobias, “Implementing crystals-dilithium signature scheme on
fpgas,” in The 16th International Conference on Availability, Reliability and Security, ser. ARES 2021. New York, NY, USA: Association for
Computing Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3465481.3465756

[33] G. Land, P. Sasdrich, and T. Güneysu, “A hard crystal - implementing dilithium on reconfigurable hardware,” IACR Cryptol. ePrint Arch., vol. 2021, p.
355, 2021. [Online]. Available: https://eprint.iacr.org/2021/355

[34] D. Soni, K. Basu, M. Nabeel, and R. Karri, “A hardware evaluation study of nist post-quantum cryptographic signature schemes,” in Second PQC
Standardization Conference. NIST, 2019.

[35] V. B. Dang, F. Farahmand, M. Andrzejczak, and K. Gaj, “Implementing and benchmarking three lattice-based post-quantum cryptography algorithms
using software/hardware codesign,” in 2019 International Conference on Field-Programmable Technology (ICFPT), 2019, pp. 206–214.

[36] P. He, C.-Y. Lee, and J. Xie, “Compact coprocessor for kem saber: Novel scalable matrix originated processing.”
[37] A. Abdulgadir, K. Mohajerani, V. B. Dang, J.-P. Kaps, and K. Gaj, “Lightweight implementation of saber resistant against side-channel attacks.”
[38] J. Maria Bermudo Mera, F. Turan, A. Karmakar, S. Sinha Roy, and I. Verbauwhede, “Compact domain-specific co-processor for accelerating module

lattice-based kem,” in 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.
[39] M. Imran, F. Almeida, J. Raik, A. Basso, S. S. Roy, and S. Pagliarini, “Design space exploration of saber in 65nm asic,” 2021.
[40] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and L. Liu, “Lwrpro: An energy-efficient configurable crypto-processor for module-lwr,”

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 3, pp. 1146–1159, 2021.

