
A Hardware Accelerator for Polynomial
Multiplication Operation of CRYSTALS-KYBER

PQC Scheme
Ferhat Yaman, Ahmet Can Mert, Erdinç Öztürk, Erkay Savaş

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
{ferhatyaman, ahmetcanmert, erdinco, erkays}@sabanciuniv.edu

Abstract—Polynomial multiplication is one of the most time-
consuming operations utilized in lattice-based post-quantum
cryptography (PQC) schemes. CRYSTALS-KYBER is a lattice-
based key encapsulation mechanism (KEM) and it was recently
announced as one of the four finalists at round three in
NIST’s PQC Standardization. Therefore, efficient implementa-
tions of polynomial multiplication operation are crucial for high-
performance CRYSTALS-KYBER applications. In this paper,
we propose three different hardware architectures (lightweight,
balanced, high-performance) that implement the NTT, Inverse
NTT (INTT) and polynomial multiplication operations for the
CRYSTALS-KYBER scheme. The proposed architectures include
a unified butterfly structure for optimizing polynomial multipli-
cation and can be utilized for accelerating the key generation,
encryption and decryption operations of CRYSTALS-KYBER.
Our high-performance hardware with 16 butterfly units shows
up to 112×, 132× and 109× improved performance for NTT,
INTT and polynomial multiplication, respectively, compared to
the high-speed software implementations on Cortex-M4.

Index Terms—CRYSTALS-KYBER, PQC, NTT, Polynomial
Multiplication, Hardware

I. INTRODUCTION

Lattice-based cryptography has already gained great interest
and it forms the mathematical basis for many different appli-
cations such as post-quantum key-encapsulation mechanisms
(KEMs), post-quantum signature protocols and homomor-
phic encryption [1], [2]. National Institute of Standards and
Technology (NIST) has started a post-quantum cryptography
standardization process in 2016 and many lattice-based post-
quantum schemes are proposed since then. NIST recently
announced the finalists at the round three of the standardiza-
tion process and the lattice-based KEM CRYSTALS-KYBER
(Kyber) is one of the four finalists.

Lattice-based cryptosystems work with polynomial rings
and perform costly polynomial arithmetic; multiplication of
two large-degree polynomials, in particular. Schoolbook poly-
nomial multiplication method is inefficient for implementing
polynomial multiplication operations and it has O(n2) com-
plexity. Number theoretic transform (NTT) reduces O(n2)
complexity to quasi-linear complexity and, therefore, it is
utilized in many lattice-based cryptosystems suffering from
high complexity of polynomial arithmetic [1], [2], [3], [4], [5].

F. Yaman, E. Öztürk and E. Savaş are supported by TUBITAK under Grant
Number 118E725.

There are many works in the literature targeting efficient im-
plementations of main arithmetic blocks of the post-quantum
cryptosystems for software [6], [7], [8] and hardware [9], [10],
[11], [12], [13], [14] platforms.

Key generation, encryption and decryption operations of
Kyber scheme also use polynomial multiplication operation
and NTT-based polynomial multiplication are utilized for
efficient implementation of these operations. The team of
Kyber adopted the technique proposed by Seiler et al. [15]
and reduced the parameter q of Kyber from 7681 to 3329.
This changed the definitions of NTT, Inverse NTT (INTT)
and coefficient-wise multiplication operations. To the best of
our knowledge, there are three hardware [13], [14], [10] and
one software [7] implementations proposed for the NTT/INTT
and polynomial multiplication operations of the Kyber with
the new parameters and operation definitions. Our proposed
hardware architecture outperforms the works in [7], [10] and
[13].

In this work, we propose three different hardware archi-
tectures (lightweight, balanced, high-performance) performing
NTT/INTT and polynomial multiplication operations for the
new parameter set of Kyber1. The proposed architectures
utilize a unified butterfly structure, which can be used for
both NTT and INTT operations. The lightweight, balanced
and high-performance hardware architectures use one, four and
sixteen butterfly units, respectively. They can be used to ac-
celerate key generation, encryption and decryption operations
of Kyber.

The rest of the paper is organized as follows. Section II
introduces preliminaries. Section III presents the hardware
architectures with optimizations. Section IV presents the im-
plementation results and compares the results with prior work,
and Section V concludes the paper.

II. PRELIMINARIES

In this section, we present the notation we follow throughout
the paper, a brief definition of Kyber scheme and its arithmetic
operations.

A. Notation

Let the ring Zq represent the integers {0, 1, . . . , q − 1}.
Let the polynomial ring Rq = Zq[x]/φ(x) represent the

1Code is available at https://github.com/acmert/kyber-polmul-hw



polynomials reduced with φ(x) with coefficients in Zq . For
example, when φ(x) is form of xn + 1, Rq = Zq[x]/(xn + 1)
represents the polynomials with degree of at most n− 1.

Throughout the paper, we represent a polynomial, a column
vector of polynomials and a matrix of polynomials with
regular lowercase (e.g. v), bolded lowercase (e.g. v) and
bolded uppercase letters (e.g. V), respectively. Let vT and VT

represent the transpose of a vector of polynomials v and a
matrix of polynomials V, respectively. Coefficients of an n
element vector a (or polynomial a(x)) are represented with
ai where i represents the position of the coefficient starting
from 0. Polynomials in NTT domain are represented with
a line over their names. For example, a(x) represents NTT
domain representation of polynomial a(x). Let a ← Rq and
a

$←− Rq represent that a is sampled uniformly from Rq and
from centered binomial distribution, respectively. Let ·, � and
◦ represent integer, coefficient-wise and matrix multiplications,
respectively. For the rest of the paper, q and n represent the
coefficient modulus and the degree of the polynomial ring,
which are 3329 and 256 for Kyber, respectively.

B. NTT-based Polynomial Multiplication

NTT is the discrete Fourier transform defined over the
ring Zq . An n-point(pt) NTT operation transforms an n
element vector a = [a0, a1, . . . , an−1] (or (n − 1) degree
polynomial a(x) =

∑n−1
i=0 aix

i) to another n element vec-
tor a = [ā0, ā1, . . . , ān−1] (or (n − 1) degree polynomial
a(x) =

∑n−1
i=0 aix

i) using

āi =

n−1∑
j=0

ajω
ij (mod q) for i = 0, 1, . . . , n− 1.

The NTT operation uses a constant called twiddle factor,
ω ∈ Zq , which is n-th root of unity. The twiddle factor satisfies
the conditions ωn ≡ 1 (mod q) and ωi 6= 1 (mod q) ∀i < n,
where q ≡ 1 (mod n). Similarly, INTT operation uses the
same formula as NTT operation with ω−1 (mod q) and it also
requires the resulting coefficients to be multiplied with n−1

(mod q) in Zq . There are mainly two well-known approaches
for NTT operation: decimation in time and decimation in fre-
quency. The former and latter NTT operations utilize Cooley-
Tukey (CT) and Gentleman-Sande (GS) butterfly structures,
respectively [16], [17].

NTT/INTT operations convert schoolbook polynomial
multiplication operation into coefficient-wise multiplication
(CWM) and reduce the complexity of polynomial multipli-
cation operation. When φ(x) is not in any special form,
multiplication of polynomials a(x) and b(x) in Rq requires
doubling the sizes of inputs with zero-padding and a separate
polynomial reduction operation by φ(x) as shown in Eqn. 1
where NTT2n and INTT2n represent 2n-pt NTT and 2n-pt
INTT operations, respectively.

c = INTT2n(NTT2n(a)� NTT2n(b)) mod φ(x) (1)

When φ(x) is form of xn + 1, a technique called neg-
ative wrapped convolution is utilized which eliminates the

Algorithm 1 Forward In-place NTT Algorithm
Input: a(x) ∈ Zq[x]/(xn + 1) in standard-order
Input: ωn ∈ Zq (primitive n-th root of unity)
Input: n = 2l, q (s.t. q ≡ 1 mod n)
Output: a(x) ∈ Zq[x]/(xn + 1) in bit-reversed order

1: k ← 1
2: for i from 1 by 1 to l − 1 do
3: m← 2l−i

4: for s from 0 by m to n do
5: for j from s by 1 to s+m do
6: A,B,W ← a[j], a[m+ j], ωbrl−1(k) mod q
7: T ← (W ·B) mod q
8: E,O ← (A+ T ) mod q, (A− T ) mod q
9: a[j], a[j +m]← E,O

10: end for
11: k ← k + 1
12: end for
13: end for

need for doubling the input sizes and separated polynomial
reduction for polynomial multiplication operations in Rq [18].
However, this requires the coefficients of input and output
polynomials to be multiplied with [Ψ0,Ψ1, . . . ,Ψ(n−1)] and
[Ψ0,Ψ−1, . . . ,Ψ−(n−1)], respectively. These operations are
called pre-processing and post-processing, respectively. The
constant Ψ is 2n-th root of unity satisfying the conditions
Ψ2n ≡ 1 (mod q) and Ψi 6= 1 (mod q) ∀i < 2n, where
q ≡ 1 (mod 2n).

In [15], Seiler et al. proposes a variant of NTT operation
which enables efficient polynomial multiplication in Rn

q with
satisfying only q ≡ 1 (mod n) and without requiring pre-
processing and post-processing operations. This technique is
adopted by Kyber and their parameter q is reduced from 7681
to 3329. The NTT, INTT and CWM operations of Kyber
are also changed accordingly [2]. This new variant of NTT
operation generates 128 degree-2 polynomials, different from
original NTT operation. Similarly, new INTT operation takes
128 degree-2 polynomials as input. Since the outputs of NTT
operation are 128 degree-2 polynomials, CWM operation is
performed as the multiplications of two degree-2 polynomials
in Zq[x]/(x2 − ωi) where i changes according to index of
coefficients. Algorithms for NTT, INTT and CWM operations
of Kyber are shown in Algorithm 1, 2 and 3, respectively,
where brl−1(·) represents bit-reversal operation with bit size
of l − 1.

This new variant of NTT/INTT operations are represented
as NT T /INT T while original NTT/INTT operations are
represented with NTT/INTT. The polynomial multiplication
operation for Kyber with new NTT definition is shown in
Eqn. 2.

c = INT Tn(CWM(NT Tn(a),NT Tn(b))) (2)

C. CRYSTALS-KYBER

Kyber is a KEM transformed from public-key encryption
scheme and it is proposed for NIST’s post-quantum standard-



Algorithm 2 Inverse In-place NTT Algorithm
Input: a(x) ∈ Zq[x]/(xn + 1) in bit-reversed order
Input: ω−1

n ∈ Zq (inverse of primitive n-th root of unity)
Input: n = 2l, q (s.t. q ≡ 1 mod n)
Output: a(x) ∈ Zq[x]/(xn + 1) in standard-order

1: k ← 0
2: for i from l − 1 by −1 to 1 do
3: m← 2l−i

4: for s from 0 by m to 2l do
5: for j from s by 1 to s+m do
6: A,B,W ← a[j], a[j +m], ωbrl−1(k)+1 mod q
7: E,O ← (A+B) mod q, (A−B) ·W mod q
8: a[j], a[j +m]← DIVby2(E),DIVby2(O)
9: end for

10: k ← k + 1
11: end for
12: end for

Algorithm 3 Coefficient-wise Multiplication Algorithm

Input: a(x), b(x) ∈ Zq[x]/(xn + 1) in bit-reversed order
Input: ω ∈ Zq (primitive n-th root of unity)
Output: c(x) ∈ Zq[x]/(xn + 1) in bit-reversed order

1: for i from 0 by 1 to 2l−1 do
2: W ← ωbrl−1(i)+1 mod q
3: a0, a1 ← a[2i], a[2i+ 1]
4: b0, b1 ← b[2i], b[2i+ 1]
5: c[2i]← (a0 · b1 + a1 · b0) mod q
6: c[2i+ 1]← (a1 · b1 ·W + a0 · b0) mod q
7: end for

ization process [2]. Kyber algorithm works with polynomial
ring Rq where φ(x), q and n are xn + 1, 3329 and 256,
respectively. It specifies its key generation, encryption and
decryption operations as follow:

• Key Generation: For A← Rk×k
q and s, e

$←− Rk
q ,

(pk, sk) = (A ◦ NT T (s) +NT T (e),NT T (s))

• Encryption: For A ← Rk×k
q , r, e1

$←− Rk
q , e2

$←− Rq ,
pk and m ∈ Rq ,

ct = (u, v) = (INT T (A
T ◦ NT T (r)) +

e1, INT T (pkT ◦ NT T (r)) + e2 +m)

• Decryption: For sk = s and ct = (u, v),
m = v − INT T (skT ◦ NT T (u))

Kyber adjusts its security level by changing the parameter
k which can take any of {2, 3, 4}. Key generation operation
requires 2k NTT operations and k2 CWM operations. Encryp-
tion operation requires k NTT, k2 + k CWM and k+ 1 INTT
operations. Decryption operation requires k NTT, k CWM and
1 INTT operations.

III. THE PROPOSED DESIGN

In this section, the proposed hardware architectures and their
main arithmetic blocks are explained in a bottom-up fashion,
starting from the implementation of modular reduction unit.
Then, we present our unified butterfly unit and finally overall
design is presented.

Fig. 1. Modular Reduction Unit

1) Modular Reduction Unit
In this section, we present a constant time modular reduction

hardware for q = 3329 = 212−29−28+1. Modular reduction
unit takes a 24-bit integer c as input from a DSP block per-
forming 12-bit×12-bit unsigned integer multiplication with 1
clock cycle latency. The proposed modular reduction hardware
utilizes the property 212 ≡ 29+28−1 (mod 3329) recursively
in a similar approach with Zhang et al. [19] as shown in
Eqn. 3-7 where c[x : y] represents the bits of c from yth

bit to xth bit.

d = 212c[23 : 12] + c[11 : 0] (3)

d = 29c[23 : 12] + 28c[23 : 12]− c[23 : 12] + c[11 : 0] (4)

d = 212c[23 : 15] + 212c[23 : 16] + 29c[14 : 12]+ (5)

28c[15 : 12]− c[23 : 12] + c[11 : 0]

d = (29 + 28 − 1)(c[23 : 15] + c[23 : 16])+ (6)

29c[14 : 12] + 28c[15 : 12]− c[23 : 12] + c[11 : 0]

d = 29c[23 : 15] + 28c[23 : 15]− c[23 : 15]+ (7)

29c[23 : 16] + 28c[23 : 16]− c[23 : 16]+

29c[14 : 12] + 28c[15 : 12]− c[23 : 12] + c[11 : 0]

We apply this approach recursively until no bits left at
position greater than 12. Throughout this process, we eliminate
redundant operations by combining identical bits at the same
position. For example, there are two 28c[15] in Eqn. 7 where
they can be combined as single 29c[15]. We also convert
subtraction operation into addition by negating the subtracted
integer, adding 1 to the final result and extending the sign bit to
15th bit. As shown in Fig. 1, this recursive process generates
a tree of bits where white and red boxes represent bit and
negated bit of the input c, respectively.

In order to reduce the tree, we utilize Dadda’s method [20]
which produces an incomplete result with two integers, C and
S, using 50 full adders (FAs) and 13 half adders (HAs). In
order to generate the final result, the resulting integers need
to be added. We observe that the final result at the end of
addition operation is between 9271 and -3264 which is not
in the desired range [0, q). Therefore, (C + S + q), (C + S),



Fig. 2. Unified Butterfly Unit

(C + S − q) and (C + S − 2q) are calculated separately after
the Dadda tree and the result in the range [0, q) is selected
as the final result. The proposed modular reduction unit for
q = 3329 has 1 clock cycle latency. There are other modular
reduction methods such as Barrett and Montgomery [9]. Both
Barrett and Montgomery reductions require 2 multiplication
operations with additional addition and subtraction operations.
Montgomery modular reduction also requires its operands to
be converted back and forth in Montgomery space. On the
other hand, our proposed implementation utilizes only addition
and subtraction operations.

2) Unified Butterfly Unit
NTT operation requires CT butterfly which performs A +

B ·ω (mod q) and A−B ·ω (mod q) while INTT operation
utilizes GS butterfly structure which performs A+B (mod q)
and (A−B)·ω (mod q). Since the proposed design aims using
different butterfly structures for NTT and INTT operations, we
propose an unified butterfly unit shown in Fig. 2.

The proposed butterfly unit uses no extra modular multiplier,
adder or subtractor than a dedicated CT or GS butterfly unit.
The proposed butterfly unit has one modular multiplier, one
modular adder and one modular subtractor. It also has pipeline
registers for synchronizing output coefficients and multiplexers
for reconfigurability. The proposed butterfly unit takes A, B
and W as inputs, performs butterfly operation and generates
two coefficients E and O as outputs corresponding to the Steps
6–9 of the Algorithm 1 and the Steps 6–8 of the Algorithm 2,
respectively. It also takes control signal CT as input which
is used as selection signal for multiplexers in the butterfly
unit. When CT signal is set as 0 and 1, the butterfly unit is
configured to work as GS and CT butterfly, respectively. The
butterfly unit has 3 clock cycles latency for both CT and GS
configurations.

In [19], Zhang et al. proposes a technique to eliminate the
multiplication of resulting coefficients with n−1 (mod q) after
the INTT operation. For an odd prime q, x

2 (mod q) can be
performed as shown in Eqn. 8 where � represents right shift.

x

2
(mod q) = (x� 1) + x[0] · (q + 1

2
) (8)

Utilizing this property, one can divide the output of GS
butterfly by two and generate A+B

2 (mod q) and (A−B)ω
2

(mod q) coefficients instead of A+B (mod q) and (A−B)ω
(mod q) as shown in the Step 8 of Algorithm 2. In this work,
we adopt this technique and insert two DIVby2 units into our

Fig. 3. Scheduling of CWM Operation for Kyber

butterfly units (shown as red boxes in Fig. 2) which perform
the operation in Eqn. 8. Therefore, we eliminate extra 256
multiplication operations in Zq after INTT operation at the
expense of extra hardware in the butterfly unit. This technique
reduces the number of modular multiplication operation in
INTT by 22%.

The proposed butterfly unit can also be configured to per-
form CWM operations defined in Algorithm 3. A polynomial
multiplication in Zq[x]/(x2 − ωi) requires 5 multiplication
and 2 addition operations as shown in the Steps of 5–6 of
Algorithm 3. This operation can be realized using a series
of multiply-accumulate which can be performed using CT
butterfly configuration and reading E output. Fig. 3 illus-
trates the multiplication of (a0 + a1x) and (b0 + b1x) in
Zq[x]/(x2 − ω) where red, green and blue letters represent
the input coefficients to B, W and A inputs of butterfly unit,
respectively. Multiplication results a1b0, a1b1 and a0b0 are
forwarded to the input of butterfly unit before being stored
back to the memory. It takes 5 clock cycles for a CWM
operation after filling the pipeline.

Unified butterfly is also utilized in previous works [10],
[14]. Both of the proposed units use 2 multipliers, whereas
our design uses only single modular multiplier unit. Also, our
butterfly unit realizes the multiplication with 1

2 (mod q) oper-
ation after GS butterfly using adder and therefore, eliminates
the multiplications with n−1 at the end of INTT operation.

3) Overall Design
Fig. 4 shows the high-level block diagram of the proposed

hardware architecture with one butterfly unit. There are four
dual-port BRAMs for each butterfly unit where two BRAMs
are used to store the first input polynomial and output poly-
nomial, and two BRAMs are used to store the second input
polynomial. There is also one BROM for each butterfly unit
to store pre-computed and loaded powers of twiddle factor.
Prior to any operation, input polynomials are loaded into the
BRAMs with input multiplexers. Then, the proposed hardware
starts its operation according to start signals and the resulting
polynomial is read using the output multiplexers after the
operation.

The proposed architecture implements NTT and INTT
schemes shown in Algorithm 1 and 2, respectively. Both
operations consist of 7 stages and 128 butterfly operations
should be performed in each stage. An n-pt NTT operation can
be performed as separate two (n/2)-pt NTT operations after



Fig. 4. Overall Design with 1
Butterfly Unit Fig. 5. Memory Access Pattern

the first stage and this approach recursively can be applied
to the smaller NTT operations. In this work, we utilize this
property and propose an efficient memory access pattern as
shown in Fig. 5 where numbers inside the boxes represent
indices of stored coefficients. In an NTT stage, coefficients
stored in the first half of the memory blocks should be read
and written into the first memory block due to changing access
pattern of NTT operation in each stage. Similarly, coefficients
in the second half of the memory blocks should be read and
written into the second memory block as shown in Fig. 5.

We adopt a changing memory read pattern for efficient
memory management. Since coefficients in consecutive mem-
ory addresses should be written into the same memory for
the next stage, they should not be read consecutively. Instead,
coefficients from the first and second half of the memory
blocks should be read in an alternating way. For example, in
the first stage of NTT operation, after reading the coefficients
in address 0, coefficients in address (n/4) should be read
instead of address 1 for the next butterfly operation. Since
the coefficients read in a clock cycle should be written into
the same memory block after butterfly operation, we placed
an extra register at the output of O output of butterfly unit as
shown with green in Fig. 4. Therefore, two coefficients can be
written in the same memory block in two consecutive clock
cycles. Since the proposed architecture is pipelined, this extra
register does not cause any stall. Similarly, INTT operation
uses the same memory access pattern.

Our proposed balanced and high-performance designs use
4 and 16 butterfly units respectively. Number of memory
blocks increases with number of butterfly units to not stall the
pipeline. Coefficients are distributed across memory blocks.
While number of memory blocks are increasing, used address
space decreases accordingly.

The proposed designs can take two polynomials as inputs
and they can perform NTT and INTT operations for both input
polynomials. Also, the designs can perform CWM operation
between input polynomials. The proposed architectures with
1, 4 and 16 butterfly units finish NTT operation in 904, 232,
69, INTT operation in 904, 233, 71 and CWM operation in
647, 167, 47 clock cycles, respectively, excluding the time for
loading input polynomials into BRAMs.

IV. RESULTS

In this section, we present our implementation results and
their comparison with the works in the literature.

A. Prior Works

There are full software implementations of Kyber with old
parameter sets in the literature. Previously, Seiler et al. [6]
optimized NTT, INTT and polynomial multiplication oper-
ations utilizing AVX2 instructions on Skylake and Haswell
architecture processors. Later, they proposed a faster design
in [8] using new modular reduction technique. Another im-
plementation of Kyber scheme is published by Botros et
al. [7]. They proposed a new NTT module for new Kyber
parameters with optimizations, such as merging NTT layers
and instruction alignment of polynomials on ARM Cortex-M4
processors. There are also hardware accelerators for Kyber
proposed in the literature with new Kyber parameters. In
[13], the authors proposed a full hardware implementation of
Kyber with new parameters utilizing resource reusing. Recent
work [14] implements PQC specific schemes on a vector
co-processor with RISC-V SCR1 processor targeting ASIC
platform. This work supports Kyber with new parameters. The
study in [10] implements an NTT accelerator with RISC-V
architecture which can be applied to different PQC schemes.
There are also hardware accelerators proposed for previous
Kyber parameters [9], [11], [12]. Some of these works do
not provide results for operations separately, so they are not
included or are shown partially on Table I.

B. Implementation Results and Comparison

We developed three hardware architectures with one, four
and sixteen butterfly units (lightweight, balanced and high-
performance, respectively) proposed in this work into Verilog
modules. Then, they are synthesized, placed and routed for
different FPGA families. The proposed hardware architectures
are first implemented for Spartan-6 FPGA (xc6slx75fgg676-
3) using Xilinx ISE 14.7 with default synthesis options. Then,
they are implemented for Artix-7 FPGA (xc7a200tffg1156-
3) using Xilinx Vivado 2018.1 with default synthesis options.
Implementation results of our architectures and the works in
the literature are shown in Table I. The proposed modular
reduction and butterfly units are also synthesized, placed and
routed as separate units for Spartan-6 and Artix-7 FPGAs.
Modular reduction unit uses 236 LUTs with 154 MHz and 195
LUTs with 212 MHz for Spartan-6 and Artix-7, respectively.
Butterfly unit uses 377 LUTs, 242 DFFs, 1 DSPs with 129
MHz and 312 LUTs, 207 DFFs, 1 DSPs with 192 MHz for
Spartan-6 and Artix-7, respectively.

There are not many prior works in the literature using new
Kyber parameter set. However, not all works gives perfor-
mance figures for separate operations. Therefore, it is hard to
compare our designs for each operation and parameter set with
other works. Our high-performance hardware architecture out-
performs prior works for polynomial multiplication operation
in terms of latency. The proposed high-performance hardware
shows up to 112×, 132× and 109× better performance for



TABLE I
IMPLEMENTATION RESULTS AND THEIR COMPARISON TO PRIOR WORK

Work Platform n q / dlog2(q)e LUT / REG / DSP / BRAM Clock Latency (CC)
(MHz) NTT INTT PMUL

[6]
a Intel Corei7-6600U Skylake 256 7681 / 13 – / – / – / – – 419 394 1278

Intel Core i7-4770K Haswell 256 7681 / 13 – / – / – / – – 460 440 1432

[7]
a,b,c

ARM Cortex-M4 256 7681 / 13 – / – / – / – – 9452 10373 32576
256 3329 / 12 – / – / – / – – 7725 9347 27873

[10]a,b Zynq-7000 256 – / 16 2908 / 170 / 9 / – – 1935 1930 –
[11]a Virtex-6 256 7681 / 13 4549 / 3624 / 1 / 12 262 2096 – –

[12]a Virtex-6 256 7681 / 13 1349 / 860 / 1 / 2 313 1691 – –512 12289 / 14 1536 / 953 / 1 / 3 278 3443
[13]b,c Artix-7, Virtex-7 256 3329 / 12 – / – / – / – 225 1834 – –

[14]a,b 28nm CMOS 256 3329 / 12 512K / – / – / – – 41 – –256 7681 / 13 45

TW-1 BTF
b,c Spartan-6

256 3329 / 12

985 / 444 / 1 / 5 138 904 904 3359Artix-7 948 / 352 / 1 / 2.5 190

TW-4 BTFs
b,c Spartan-6 2498 / 1046 / 4 / 18 127 232 233 864Artix-7 2543 / 792 / 4 / 9 182

TW-16 BTFs
b,c Spartan-6 9898 / 3688 / 16 / 70 115 69 71 256Artix-7 9508 / 2684 / 16 / 35 172

TW:This Work. PMUL:INTT(CWM(NTT(A), NTT(B))). a:Works with multiple n and q. b:Supports new Kyber parameters. c:Optimized for constant q.

NTT, INTT and polynomial multiplication, respectively, com-
pared to the high-speed software implementation on Cortex-
M4 [7]. Our high-performance design is also 6× faster for
NTT operation compared to the software implementation of
Kyber PQC scheme with old parameter sets on Intel processors
with Skylake and Haswell architectures [6]. For hardware
implementations, our design shows better latency performance
for NTT operation than the prior works in the literature except
for the work in [14] proposing an ASIC design with large
521K gate area. Our high-performance design accelerates NTT
operation on FPGA platform up to 28× compared to the work
in [10] which uses a 16-bits q. Our balanced design is even
faster in terms of latency. However, Fritzmann et al. [10]
reuses processor resources via RISC-V extended instruction
set architecture. We also provide utilization results of our
works for low cost Spartan-6 FPGAs. The works [6] and [8]
are using Skylake CPUs which are not suitable for embedded
systems. That makes our design affordable and practical in use
of Kyber PQC scheme in embedded systems.

V. CONCLUSION

In this paper, we present three hardware architectures
(lightweight, balanced, high-performance) performing NTT,
INTT and polynomial multiplication operations for Kyber
scheme. These operations are extensively utilized in key
generation, encryption and decryption operations of Kyber and
our proposed polynomial multiplier hardware can be utilized
as a hardware accelerator for these operations, hence for
Kyber. Compared to the high-speed software implementations
on Cortex-M4 [7], the proposed high-performance hardware
shows up to 112×, 132× and 109× better performance for
NTT, INTT and polynomial multiplication, respectively.

REFERENCES
[1] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,

and D. Stehlé, “Crystals-dilithium: A lattice-based digital signature
scheme,” IACR Trans. on CHES, pp. 238–268, 2018.

[2] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber: a CCA-secure
module-lattice-based KEM,” in IEEE Euro S&P, 2018, pp. 353–367.

[3] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum
key exchange—a new hope,” in 25th USENIX, 2016, pp. 327–343.

[4] E. Alkim, P. S. Barreto, N. Bindel, J. Krämer, P. Longa, and J. E.
Ricardini, “The lattice-based digital signature scheme qTESLA,” in
ACNS. Springer, 2020, pp. 441–460.

[5] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon: Fast-
Fourier lattice-based compact signatures over NTRU,” Submission to the
NIST’s post-quantum cryptography standardization process, 2018.

[6] G. Seiler, “Faster AVX2 optimized NTT multiplication for Ring-LWE
lattice cryptography,” Crypto. ePrint Arch., Report 2018/039, 2018.

[7] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-Efficient High-
Speed Implementation of Kyber on Cortex-M4,” Progress in Cryptology
– AFRICACRYPT 2019 Lecture Notes in CS, p. 209–228, 2019.

[8] V. Lyubashevsky and G. Seiler, “NTTRU: Truly Fast NTRU Using
NTT,” Cryptology ePrint Archive, Report 2019/040, 2019.

[9] A. C. Mert, E. Karabulut, E. Öztürk, E. Savaş, M. Becchi, and A. Aysu,
“A Flexible and Scalable NTT Hardware : Applications from Homo-
morphically Encrypted Deep Learning to Post-Quantum Cryptography,”
in 2020 DATE, pp. 346–351.

[10] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: Tightly Coupled
RISC-V Accelerators for Post-Quantum Cryptography,” IACR Trans. on
CHES, vol. 2020, no. 4, pp. 239–280, Aug. 2020.

[11] T. Pöppelmann and T. Güneysu, “Towards practical lattice-based public-
key encryption on reconfigurable hardware,” in International Conference
on SAC. Springer, 2013, pp. 68–85.

[12] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact Ring-LWE Cryptoprocessor,” in CHES, 2014, pp. 371–391.

[13] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A Pure Hardware Implementa-
tion of CRYSTALS-KYBER PQC Algorithm through Resource Reuse,”
IEICE Electronics Express, vol. advpub, 2020.

[14] G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng,
“VPQC: A Domain-Specific Vector Processor for Post-Quantum Cryp-
tography Based on RISC-V Architecture,” IEEE Trans. on Circuits and
Systems I: Regular Papers, vol. 67, no. 8, pp. 2672–2684, 2020.

[15] V. Lyubashevsky and G. Seiler, “NTTRU: Truly Fast NTRU Using
NTT,” IACR Trans. on CHES, vol. 2019, no. 3, pp. 180–201, May 2019.

[16] E. Chu and A. George, Inside the FFT black box: serial and parallel
fast Fourier transform algorithms. CRC press, 1999.

[17] P. Longa and M. Naehrig, “Speeding up the Number Theoretic Trans-
form for Faster Ideal Lattice-Based Cryptography,” in Cryptology and
Network Security, Milan, Italy, Nov. 2016, pp. 124–139.

[18] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware,” in Progress in
Cryptology – LATINCRYPT 2012, 2012, pp. 139–158.

[19] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly Effi-
cient Architecture of NewHope-NIST on FPGA using Low-Complexity
NTT/INTT,” IACR Trans. on CHES, vol. 2020, no. 2, pp. 49–72, 2020.

[20] L. Dadda, “Some Schemes for Parallel Multipliers,” in Alta Frequenza,
vol. 34, 1965, pp. 349–356.


